
A Shortcut Fusion Rule for Circular Program Calculation

A Shortcut Fusion Rule for Circular Program
Calculation

João Fernandes1 Alberto Pardo2 João Saraiva1

1Departmento de Informática
Universidade do Minho

Portugal

2Instituto de Computación
Universidad de la República

Uruguay



A Shortcut Fusion Rule for Circular Program Calculation

Circular programs

I Circular programs were proposed by R. Bird as a technique
to eliminate multiple traversals of data structures.

I Circular definitions are of the form:

(. . . , x , . . .) = f (. . . , x , . . .)

I Circular programs have been used to express
pretty-printers or type systems.

I They are the natural representation of attribute grammars
in a lazy setting.



A Shortcut Fusion Rule for Circular Program Calculation

Motivation:

I In this work we show the derivation of circular programs
from non-circular ones.

Why don’t we write circular programs directly?

1. most programmers find it very difficult;

2. it is easy to write a circular program that does not
terminate, i.e. a program with a real circularity.



A Shortcut Fusion Rule for Circular Program Calculation

Motivation:

I In this work we show the derivation of circular programs
from non-circular ones.

Why don’t we write circular programs directly?

1. most programmers find it very difficult;

2. it is easy to write a circular program that does not
terminate, i.e. a program with a real circularity.



A Shortcut Fusion Rule for Circular Program Calculation

Motivation:

I We may see circular programs as an intermediate stage for
further transformations.

Post-processing of the derived circular programs:

1. Tools and Libraries to Model and Manipulate Circular
Programs, (Fernandes & Saraiva, PEPM 07);

2. very efficient, completely data-structure free, programs are
obtained.



A Shortcut Fusion Rule for Circular Program Calculation

Motivation:

I We may see circular programs as an intermediate stage for
further transformations.

Post-processing of the derived circular programs:

1. Tools and Libraries to Model and Manipulate Circular
Programs, (Fernandes & Saraiva, PEPM 07);

2. very efficient, completely data-structure free, programs are
obtained.



A Shortcut Fusion Rule for Circular Program Calculation

Bird’s repmin

data Tree = Leaf Int | Fork Tree Tree

transform :: Tree -> Tree
transform t = replace t (tmin t)

replace :: Tree -> Int -> Tree
replace (Leaf n) m = Leaf m
replace (Fork l r) m = Fork (replace l m)

(replace r m)

tmint :: Tree -> Int
tmint (Leaf n) = n
tmint (Fork l r) = min (tmin l) (tmin r)



A Shortcut Fusion Rule for Circular Program Calculation

Bird’s method

repmin t m = (replace t m, tmin t)

�ww
repmin (Leaf n) m = (Leaf m,n)
repmin (Fork l r) m = (Fork l’ r’, min ml mr)

where (l’,ml) = repmin l m
(r’,mr) = repmin r m

�ww
transform t = t’

where (t’,m) = repmin t m



A Shortcut Fusion Rule for Circular Program Calculation

Bird’s method

repmin t m = (replace t m, tmin t)

�ww
repmin (Leaf n) m = (Leaf m,n)
repmin (Fork l r) m = (Fork l’ r’, min ml mr)

where (l’,ml) = repmin l m
(r’,mr) = repmin r m

�ww
transform t = t’

where (t’,m) = repmin t m



A Shortcut Fusion Rule for Circular Program Calculation

Bird’s method

repmin t m = (replace t m, tmin t)

�ww
repmin (Leaf n) m = (Leaf m,n)
repmin (Fork l r) m = (Fork l’ r’, min ml mr)

where (l’,ml) = repmin l m
(r’,mr) = repmin r m

�ww
transform t = t’

where (t’,m) = repmin t m



A Shortcut Fusion Rule for Circular Program Calculation

Our method

I We present a calculational rule for circular program
derivation

I It calculates circular programs from compositions of the
form:

a
prod

- (t , z)
cons

- b

I Our calculational rule is:
I generic

I correct (preserves termination properties)



A Shortcut Fusion Rule for Circular Program Calculation

Our method

I The rule we present is a variant of shortcut fusion
(fold/build).

We achieve:

1. intermediate structure deforestation;

2. multiple traversal elimination;

3. correctness guarantees.



A Shortcut Fusion Rule for Circular Program Calculation

Our method

I The rule we present is a variant of shortcut fusion
(fold/build).

We achieve:

1. intermediate structure deforestation;

2. multiple traversal elimination;

3. correctness guarantees.



A Shortcut Fusion Rule for Circular Program Calculation

Increase Average Merge Sort

I increase the elements of a list by the list’s average:

[8, 4, 6]
(+6)

- [14, 10, 12]

I sort the output list:

[14, 10, 12]
mergesort

- [10, 12, 14]



A Shortcut Fusion Rule for Circular Program Calculation

Initial solution:

1. compute the input list’s sum and length;

2. implement merge-sort using a leaf tree that contains the
numbers in the input list;

3. increase all elements by the list’s average while sorting the
increased values.



A Shortcut Fusion Rule for Circular Program Calculation

Initial program

incavgMS :: [Int] -> [Float]
incavgMS [] = []
incavgMS xs = incsort (ltreesumlen xs)

ltreesumlen :: [Int] -> (Tree, (Int, Int))
ltreesumlen [x] = (Leaf x, (x, 1))
ltreesumlen xs = let (xs1, xs2) = splitl xs

(t1, (s1, l1)) = ltreesumlen xs1
(t2, (s2, l2)) = ltreesumlen xs2

in (Fork t1 t2, (s1 + s2, l1 + l2))

incsort :: (Tree, (Int, Int)) -> [Float]
incsort (Leaf n, (s,l)) = [n + s / l]
incsort (Fork t1 t2, p) = merge (incsort (t1, p))

(incsort (t2, p))



A Shortcut Fusion Rule for Circular Program Calculation

Calculating the circular program

incavgMS xs
= incsort (ltreesumlen xs)

= incsort (fst (ltreesumlen xs), snd (ltreesumlen xs))

= incsort’ ◦ fst ◦ ltreesumlen $ xs
where

incsort’ t = incsort (t, (s,l))
(s,l) = snd (ltreesumlen xs)

= fst ◦ (incsort’ × id) ◦ ltreesumlen $ xs
where

incsort’ t = incsort (t, (s,l))
(s,l) = snd (ltreesumlen xs)



A Shortcut Fusion Rule for Circular Program Calculation

Calculating the circular program (2)

incavgMS xs
= ys

where
(ys, _) = incavgMS’ xs
incavgMS’ = (incsort’ × id) ◦ ltreesumlen $ xs
incsort’ t = incsort (t, (s, l))
(s,l) = snd (ltreesumlen xs)



A Shortcut Fusion Rule for Circular Program Calculation

Calculating the circular program (3)

We can synthesize a recursive definition for incavgMS’:

incavgMS xs
= ys

where
(ys, _) = incavgMS’ xs
(s,l) = snd (ltreesumlen xs)
incavgMS’ [x] = ([x + s/l], (x,1))
incavgMS’ xs = let (xs1, xs2) = splitl xs

(ys1, (s1,l1)) = incavgMS’ xs1
(ys2, (s2,l2)) = incavgMS’ xs2

in (merge ys1 ys2, (s1+s2, l1+l2))



A Shortcut Fusion Rule for Circular Program Calculation

Calculating the circular program (4)
Multiple traversal elimination:

snd ◦ ltreesumlen = snd ◦ incavgMS’

�www
incavgMS xs = ys

where
(ys, (s,l)) = incavgMS’ xs
incavgMS’ [x] = ([x + s/l], (x,1))
incavgMS’ xs = let (xs1, xs2) = splitl xs

(ys1, (s1,l1)) = incavgMS’ xs1
(ys2, (s2,l2)) = incavgMS’ xs2

in (merge ys1 ys2, (s1+s2, l1+l2))



A Shortcut Fusion Rule for Circular Program Calculation

The method

incsort = pfold (hleaf,hfork)
where

hleaf n (s,l) = [n + s/l]
hfork ys zs _ = merge ys zs

pfold :: (Int -> z -> a,a -> a -> z -> a) -> (Tree,z) -> a
pfold (h1,h2) = p

where
p (Leaf n,z) = h1 n z
p (Fork l r, z) = h2 (p l z) (p r z) z



A Shortcut Fusion Rule for Circular Program Calculation

The method (2)

ltreesumlen = g (Leaf,Fork)

g :: ∀ a. (Int -> a,a -> a -> a) -> [Int] -> (a,(Int,Int))
g (leaf,fork) [x]

= (leaf x, (x, 1))
g (leaf,fork) xs

= let (xs1, xs2) = splitl xs
(t1, (s1, l1)) = g (leaf,fork) xs1
(t2, (s2, l2)) = g (leaf,fork) xs2

in (fork t1 t2, (s1+s2, l1+l2))



A Shortcut Fusion Rule for Circular Program Calculation

The method (3)

incavgMS xs
= incsort (ltreesumlen xs)

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ xs
where hleaf n (s,l) = [n + s/l]

hfork ys zs _ = merge ys zs

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = hleaf n (s,l)
kfork ys zs = hfork ys zs (s,l)

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = [n + s/l]
kfork ys zs = merge ys zs



A Shortcut Fusion Rule for Circular Program Calculation

The method (3)

incavgMS xs
= incsort (ltreesumlen xs)

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ xs
where hleaf n (s,l) = [n + s/l]

hfork ys zs _ = merge ys zs

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = hleaf n (s,l)
kfork ys zs = hfork ys zs (s,l)

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = [n + s/l]
kfork ys zs = merge ys zs



A Shortcut Fusion Rule for Circular Program Calculation

The method (3)

incavgMS xs
= incsort (ltreesumlen xs)

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ xs
where hleaf n (s,l) = [n + s/l]

hfork ys zs _ = merge ys zs

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = hleaf n (s,l)
kfork ys zs = hfork ys zs (s,l)

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = [n + s/l]
kfork ys zs = merge ys zs



A Shortcut Fusion Rule for Circular Program Calculation

The method (3)

incavgMS xs
= incsort (ltreesumlen xs)

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ xs
where hleaf n (s,l) = [n + s/l]

hfork ys zs _ = merge ys zs

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = hleaf n (s,l)
kfork ys zs = hfork ys zs (s,l)

= ys
where (ys,(s,l)) = g (kleaf,kfork) xs

kleaf n = [n + s/l]
kfork ys zs = merge ys zs



A Shortcut Fusion Rule for Circular Program Calculation

Shortcut fusion: pfold/buildp rule

pfold (hleaf,hfork) ◦ buildp g $ c
= v
where

(v,z) = g (kleaf,kfork)
kleaf n = hleaf n z
kfork l r = hleaf l r z

buildp :: (∀ a. (Int -> a,a -> a -> a) -> c -> (a,z))
-> c -> (Tree,z)

buildp g = g (Leaf,Fork)



A Shortcut Fusion Rule for Circular Program Calculation

fold/buildp

(fold (kleaf,kfork) × id) ◦ buildp g = g (kleaf,kfork)

fold :: (Int -> a,a -> a -> a) -> Tree -> a
fold (k1,k2) = f

where
f (Leaf n) = k1 n
f (Fork l r) = k2 (f l) (f r)



A Shortcut Fusion Rule for Circular Program Calculation

Relationship pold-fold

pfold (hleaf,hfork) (t,z) = fold (kleaf,kfork) t
where

kleaf n = hleaf n z
kfork l r = hfork l r z

pfold (h1,h2) = p
where

p (Leaf n,z) = h1 n z
p (Fork l r, z) = h2 (p l z) (p r z) z

fold (k1,k2) = f
where

f (Leaf n) = k1 n
f (Fork l r) = k2 (f l) (f r)



A Shortcut Fusion Rule for Circular Program Calculation

Essential law

snd ◦ g (Leaf,Fork) = snd ◦ g (hleaf,hfork)

g :: ∀ a. (Int -> a,a -> a -> a) -> c -> (a,z)



A Shortcut Fusion Rule for Circular Program Calculation

The proof

pfold (hleaf,hfork) ◦ buildp g $ c

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ c

= pfold (hleaf,hfork) (fst ◦ g (Leaf,Fork) $ c,
snd ◦ g (Leaf,Fork) $ c)

= fold (kleaf,kfork) ◦ fst ◦ g (Leaf,Fork) $ c
where

z = snd ◦ g (Leaf,Fork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= fst ◦ (fold (kleaf,kfork) × id) ◦ g (Leaf,Fork) $ c



A Shortcut Fusion Rule for Circular Program Calculation

The proof

pfold (hleaf,hfork) ◦ buildp g $ c

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ c

= pfold (hleaf,hfork) (fst ◦ g (Leaf,Fork) $ c,
snd ◦ g (Leaf,Fork) $ c)

= fold (kleaf,kfork) ◦ fst ◦ g (Leaf,Fork) $ c
where

z = snd ◦ g (Leaf,Fork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= fst ◦ (fold (kleaf,kfork) × id) ◦ g (Leaf,Fork) $ c



A Shortcut Fusion Rule for Circular Program Calculation

The proof

pfold (hleaf,hfork) ◦ buildp g $ c

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ c

= pfold (hleaf,hfork) (fst ◦ g (Leaf,Fork) $ c,
snd ◦ g (Leaf,Fork) $ c)

= fold (kleaf,kfork) ◦ fst ◦ g (Leaf,Fork) $ c
where

z = snd ◦ g (Leaf,Fork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= fst ◦ (fold (kleaf,kfork) × id) ◦ g (Leaf,Fork) $ c



A Shortcut Fusion Rule for Circular Program Calculation

The proof

pfold (hleaf,hfork) ◦ buildp g $ c

= pfold (hleaf,hfork) ◦ g (Leaf,Fork) $ c

= pfold (hleaf,hfork) (fst ◦ g (Leaf,Fork) $ c,
snd ◦ g (Leaf,Fork) $ c)

= fold (kleaf,kfork) ◦ fst ◦ g (Leaf,Fork) $ c
where

z = snd ◦ g (Leaf,Fork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= fst ◦ (fold (kleaf,kfork) × id) ◦ g (Leaf,Fork) $ c



A Shortcut Fusion Rule for Circular Program Calculation

The proof (2)

= fst ◦ g (kleaf,kfork) $ c
where

z = snd ◦ g (Leaf,Fork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= fst ◦ g (kleaf,kfork) $ c
where

z = snd ◦ g (kleaf,kfork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= v
where

(v,z) = g (kleaf,kfork) c
kleaf n = hleaf n z
kfork l r = hfork l r z



A Shortcut Fusion Rule for Circular Program Calculation

The proof (2)

= fst ◦ g (kleaf,kfork) $ c
where

z = snd ◦ g (Leaf,Fork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= fst ◦ g (kleaf,kfork) $ c
where

z = snd ◦ g (kleaf,kfork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= v
where

(v,z) = g (kleaf,kfork) c
kleaf n = hleaf n z
kfork l r = hfork l r z



A Shortcut Fusion Rule for Circular Program Calculation

The proof (2)

= fst ◦ g (kleaf,kfork) $ c
where

z = snd ◦ g (Leaf,Fork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= fst ◦ g (kleaf,kfork) $ c
where

z = snd ◦ g (kleaf,kfork) $ c
kleaf n = hleaf n z
kfork l r = hfork l r z

= v
where

(v,z) = g (kleaf,kfork) c
kleaf n = hleaf n z
kfork l r = hfork l r z



A Shortcut Fusion Rule for Circular Program Calculation

Conclusions

I Calculational approach to circular programming

1. Intermediate Structure Deforestation

2. Multiple Traversal Elimination

I Our Calculational Rule is in the style of shortcut fusion

1. Easy to apply

2. Effective

3. Proved correct



A Shortcut Fusion Rule for Circular Program Calculation

Conclusions

I Calculational approach to circular programming

1. Intermediate Structure Deforestation

2. Multiple Traversal Elimination

I Our Calculational Rule is in the style of shortcut fusion

1. Easy to apply

2. Effective

3. Proved correct



A Shortcut Fusion Rule for Circular Program Calculation

Conclusions

I Like the usual fold/build rule, our rule can also be
implemented in GHC using the RULES pragma (rewrite
rules).

I Bad news: In Haskell our rule we presented is morally
correct only.

I surjective pairing is not valid in Haskell due to the presence
of lifted products: ⊥ 6= (⊥,⊥)

I and this property is an essential step in the proof of the rule



A Shortcut Fusion Rule for Circular Program Calculation

Conclusions

I Like the usual fold/build rule, our rule can also be
implemented in GHC using the RULES pragma (rewrite
rules).

I Bad news: In Haskell our rule we presented is morally
correct only.

I surjective pairing is not valid in Haskell due to the presence
of lifted products: ⊥ 6= (⊥,⊥)

I and this property is an essential step in the proof of the rule


