A Shortcut Fusion Rule for Circular Program Calculation

João Fernandes ${ }^{1}$ Alberto Pardo ${ }^{2}$ João Saraiva ${ }^{1}$

${ }^{1}$ Departmento de Informática
Universidade do Minho
Portugal
${ }^{2}$ Instituto de Computación
Universidad de la República
Uruguay

Circular programs

- Circular programs were proposed by R. Bird as a technique to eliminate multiple traversals of data structures.
- Circular definitions are of the form:

$$
(\ldots, x, \ldots)=f(\ldots, x, \ldots)
$$

- Circular programs have been used to express pretty-printers or type systems.
- They are the natural representation of attribute grammars in a lazy setting.

Motivation:

- In this work we show the derivation of circular programs from non-circular ones.

Why don't we write circular programs directly?
 1. most programmers find it very difficult;
 2. it is easy to write a circular program that does not terminate, i.e. a program with a real circularity.

Motivation:

- In this work we show the derivation of circular programs from non-circular ones.

Why don't we write circular programs directly?

1. most programmers find it very difficult;
2. it is easy to write a circular program that does not terminate, i.e. a program with a real circularity.

Motivation:

- We may see circular programs as an intermediate stage for further transformations.

Post-processing of the derived circular programs:

1. Tools and Libraries to Model and Manipulate Circular Programs, (Fernandes \& Saraiva, PEPM 07);
2. very efficient, completely data-structure free, programs are obtained.

Motivation:

- We may see circular programs as an intermediate stage for further transformations.

Post-processing of the derived circular programs:

1. Tools and Libraries to Model and Manipulate Circular Programs, (Fernandes \& Saraiva, PEPM 07);
2. very efficient, completely data-structure free, programs are obtained.

Bird's repmin

```
data Tree = Leaf Int | Fork Tree Tree
transform :: Tree -> Tree
transform t = replace t (tmin t)
replace :: Tree -> Int -> Tree
replace (Leaf n) m = Leaf m
replace (Fork l r) m = Fork (replace l m)
                                    (replace r m)
tmint :: Tree -> Int
tmint (Leaf n) = n
tmint (Fork l r) = min (tmin l) (tmin r)
```


Bird's method

$$
\text { repmin } t \mathrm{~m}=\text { (replace } t \mathrm{~m} \text {, tmin } t)
$$

transform $t=t^{\prime}$

Bird's method

$$
\begin{aligned}
& \text { repmin } t m=\text { (replace } t m, t m i n t) \\
& \text { repmin (Leaf } n) m=(\text { Leaf } m, n) \\
& \text { repmin (Fork } l \text { r) } m=\left(\text { Fork } l^{\prime} r^{\prime},\right. \text { min ml mr) } \\
& \text { where }\left(l^{\prime}, m l\right)=\text { repmin } l m \\
& \left(r^{\prime}, m r\right)=\text { repmin } m m
\end{aligned}
$$

Bird's method

$$
\begin{aligned}
& \text { repmin } t m=\text { (replace } t m \text { tmin } t) \\
& \downarrow
\end{aligned}
$$

Our method

- We present a calculational rule for circular program derivation
- It calculates circular programs from compositions of the form:

$$
a \xrightarrow{\text { prod }}(t, z) \xrightarrow{\text { cons }} b
$$

- Our calculational rule is:
- generic
- correct (preserves termination properties)

Our method

- The rule we present is a variant of shortcut fusion (fold/build).

We achieve:

1. intermediate structure deforestation;
2. multiple traversal elimination;
3. correctness guarantees.

Our method

- The rule we present is a variant of shortcut fusion (fold/build).

We achieve:

1. intermediate structure deforestation;
2. multiple traversal elimination;
3. correctness guarantees.

Increase Average Merge Sort

- increase the elements of a list by the list's average:

$$
[8,4,6] \xrightarrow{(+6)}[14,10,12]
$$

- sort the output list:

$$
[14,10,12] \xrightarrow{\text { mergesort }}[10,12,14]
$$

Initial solution:

1. compute the input list's sum and length;
2. implement merge-sort using a leaf tree that contains the numbers in the input list;
3. increase all elements by the list's average while sorting the increased values.

Initial program

```
incavgMS :: [Int] -> [Float]
incavgMS [] = []
incavgMS xs = incsort (ltreesumlen xs)
ltreesumlen :: [Int] -> (Tree, (Int, Int))
ltreesumlen [x] = (Leaf x, (x, 1))
ltreesumlen xs = let (xs1, xs2) = splitl xs
                                (t1, (s1, l1)) = ltreesumlen xs1
                                (t2, (s2, l2)) = ltreesumlen xs2
                                in (Fork t1 t2, (s1 + s2, l1 + l2))
incsort :: (Tree, (Int, Int)) -> [Float]
incsort (Leaf n, (s,l)) = [n + s / l]
incsort (Fork t1 t2, p) = merge (incsort (t1, p))
    (incsort, (t2, p))
```


Calculating the circular program

```
incavgMS xs
    = incsort (ltreesumlen xs)
    = incsort (fst (ltreesumlen xs), snd (ltreesumlen xs))
    = incsort' o fst o ltreesumlen $ xs
        where
            incsort' t = incsort (t, (s,l))
            (s,l) = snd (ltreesumlen xs)
    = fst o (incsort' }\times\mathrm{ id) o ltreesumlen $ xs
        where
            incsort' t = incsort (t, (s,l))
            (s,l) = snd (ltreesumlen xs)
```


Calculating the circular program (2)

```
incavgMS xs
    = ys
        where
            (ys, _) = incavgMS' xs
            incavgMS' = (incsort' }x\mathrm{ id) o ltreesumlen $ xs
            incsort' t = incsort (t, (s, l))
            (s,l) = snd (ltreesumlen xs)
```


Calculating the circular program (3)

We can synthesize a recursive definition for incavgMS' :

```
incavgMS xs
    = ys
        where
            (ys, _) = incavgMS' xs
            (s,l) = snd (ltreesumlen xs)
            incavgMS' [x] = ([x + s/l], (x,l))
            incavgMS' xs = let (xs1, xs2) = splitl xs
            (ys1, (s1,l1)) = incavgMS' xs1
            (ys2, (s2,l2)) = incavgMS' xs2
            in (merge ys1 ys2, (s1+s2, l1+l2))
```


Calculating the circular program (4)

Multiple traversal elimination:

$$
\text { snd } \circ \text { ltreesumlen }=\text { snd } \circ \text { incavgMS' }
$$

```
incavgMS xs = ys
    where
    (ys, (s,l)) = incavgMS' xs
    incavgMS' [x] = ([x + s/l], (x,1))
    incavgMS' xs = let (xs1, xs2) = splitl xs
        (ys1, (s1,l1)) = incavgMS' xs1
        (ys2, (s2,l2)) = incavgMS' xs2
        in (merge ys1 ys2, (s1+s2, l1+l2))
```


The method

```
incsort = pfold (hleaf,hfork)
    where
    hleaf n (s,l) = [n + s/l]
    hfork ys zs _ = merge ys zs
pfold :: (Int -> z -> a,a -> a -> z -> a) -> (Tree,z) -> a
pfold (h1,h2) = p
    where
    p (Leaf n,z) = h1 n z
    p (Fork l r, z) = h2 (p l z) (p r z) z
```


The method (2)

```
ltreesumlen = g (Leaf,Fork)
g :: \forall a. (Int -> a,a -> a -> a) -> [Int] -> (a,(Int,Int))
g (leaf,fork) [x]
    = (leaf x, (x, 1))
g (leaf,fork) xs
    = let (xs1, xs2) = splitl xs
        (t1, (s1, l1)) = g (leaf,fork) xs1
        (t2, (s2, l2)) = g (leaf,fork) xs2
        in (fork t1 t2, (s1+s2, l1+l2))
```


The method (3)

```
incavgMS xs
    = incsort (ltreesumlen xs)
```

 \(\begin{aligned}=\text { pfold (hleaf,hfork) } & \circ g \text { (Leaf,Fork) } \\ \text { where hleaf } n(s, l) & =[n+s / l] \\ \text { hfork ys zs } \quad & =\text { merge ys zs }\end{aligned}\)
 where \(\begin{aligned}(y s,(s, l)) & =g \text { (kleaf,kfork) xs } \\ k l e a f ~ & =\text { hleaf } n(s, l) \\ k f o r k y s ~ z s & =\text { hfork ys zs (s,l) }\end{aligned}\)
 where (ys, \((s, l))=g\) (kleaf,kfork) xs
 kfork ys zs \(=\) merge ys zs

The method (3)

```
incavgMS xs
    = incsort (ltreesumlen xs)
    = pfold (hleaf,hfork) o g (Leaf,Fork) $ xs
    where hleaf n (s,l) = [n + s/l]
        hfork ys zs _ = merge ys zs
        lys,(s,l))}=\mp@code{g (kleaf,kfork) xs
        where (ys, (s,l)) = g (kleaf,kfork) xs
        kfork ys zs = merge ys zs
```


The method (3)

```
incavgMS xs
    = incsort (ltreesumlen xs)
    = pfold (hleaf,hfork) o g (Leaf,Fork) $ xs
    where hleaf n (s,l)=[n + s/l]
        hfork ys zs _ = merge ys zs
    = ys
    where (ys,(s,l)) = g (kleaf,kfork) xs
        kleaf n = hleaf n (s,l)
        kfork ys zs = hfork ys zs (s,l)
    = ys
    where (ys,(S,l))=g (kleaf,kfork) xs
        kfork ys zs = merge ys zs
```


The method (3)

```
incavgMS xs
    = incsort (ltreesumlen xs)
    = pfold (hleaf,hfork) o g (Leaf,Fork) $ xs
    where hleaf n (s,l) = [n + s/l]
        hfork ys zs _ = merge ys zs
    = ys
    where (ys,(s,l)) = g (kleaf,kfork) xs
        kleaf n = hleaf n (s,l)
        kfork ys zs = hfork ys zs (s,l)
    = ys
    where (ys,(s,l)) = g (kleaf,kfork) xs
        kleaf n = [n + s/l]
        kfork ys zs = merge ys zs
```


Shortcut fusion: pfold/buildp rule

```
pfold (hleaf,hfork) o buildp g $ c
    = v
    where
            (v,z) = g (kleaf,kfork)
            kleaf n =hleaf n z
            kfork l r = hleaf l r z
buildp :: ( }\forall\mathrm{ a. (Int -> a,a -> a -> a) -> c -> (a,z))
        -> c -> (Tree,z)
buildp g = g (Leaf,Fork)
```


fold/buildp

```
(fold (kleaf,kfork) \(\times\) id) o buildp \(g=g\) (kleaf,kfork)
fold :: (Int \(\rightarrow\) a, \(a \rightarrow\) a \(->a) \quad->\) Tree \(->a\)
fold \((k 1, k 2)=f\)
        where
        \(\mathrm{f}(\) Leaf n\() \quad=\mathrm{k} 1 \mathrm{n}\)
        \(\mathrm{f}(\) Fork \(\mathrm{l} \quad \mathrm{r})=\mathrm{k} 2(\mathrm{f} \mathrm{l})(\mathrm{f} r)\)
```


Relationship pold-fold

```
pfold (hleaf,hfork) (t,z) = fold (kleaf,kfork) t
    where
        kleaf n = hleaf n z
        kfork l r = hfork l r z
pfold (h1,h2) = p
    where
        p (Leaf n,z) = h1 n z
        p (Fork l r, z) = h2 (p l z) (p r z) z
fold (k1,k2)=f
        where
            f (Leaf n) = k1 n
            f (Fork l r) = k2 (f l) (f r)
```


Essential law

$$
\text { snd } \circ g(\text { Leaf,Fork })=\text { snd } \circ g \text { (hleaf,hfork) }
$$

$$
g:: \forall a . \quad(\operatorname{Int} \rightarrow a, a \rightarrow a \rightarrow a) \rightarrow c \rightarrow(a, z)
$$

The proof

```
pfold (hleaf,hfork) o buildp g $ c
    = pfold (hleaf,hfork) o g (Leaf,Fork) $ c
    = pfold (hleaf,hfork)
        = fold (kleaf,kfork) o fst o g (Leaf,Fork) $ c
        where
        z = snd o g (Leaf,Fork)
        kleaf n
        kfork l r = hfork l r z
```

 = fst 0 (fold (kleaf,kfork)

The proof

$$
\begin{aligned}
& \text { pfold (hleaf,hfork) o buildp g } \$ \mathrm{c} \\
& =\text { pfold (hleaf,hfork) } \circ \mathrm{g} \text { (Leaf,Fork) } \$ \mathrm{c} \\
& =\text { pfold (hleaf,hfork) (fst o g (Leaf,Fork) } \$ \mathrm{c}, \\
& \text { snd } \circ \text { g (Leaf,Fork) } \$ \mathrm{c} \text {) }
\end{aligned}
$$

where
kleaf n
kfork $1 \mathrm{r}=$ hfork 1 r z
$=$ fst 0 (fold (kleaf,kfork)

The proof

```
pfold (hleaf,hfork) o buildp g $ c
= pfold (hleaf,hfork) o g (Leaf,Fork) $ c
= pfold (hleaf,hfork) (fst o g (Leaf,Fork) $ c,
= fold (kleaf,kfork) o fst o g (Leaf,Fork) $ c
    where
            z = snd o g (Leaf,Fork) $ c
            kleaf n =hleaf n z
            kfork l r = hfork l r z
```


The proof

```
pfold (hleaf,hfork) o buildp g $ c
    = pfold (hleaf,hfork) o g (Leaf,Fork) $ c
    = pfold (hleaf,hfork) (fst o g (Leaf,Fork) $ c,
    = fold (kleaf,kfork) o fst o g (Leaf,Fork) $ c
        where
            z = snd o g (Leaf,Fork) $ c
            kleaf n = hleaf n z
            kfork l r = hfork l r z
= fst o (fold (kleaf,kfork) × id) o g (Leaf,Fork) $ c
```


The proof (2)

$$
\begin{aligned}
& =\begin{aligned}
\text { fst og (kleaf, kfork) } \\
\text { where }
\end{aligned} \\
& \begin{aligned}
\text { z } & =\text { snd o } g \text { (Leaf,Fork) } \\
\text { kleaf } n & =\text { hleaf } n \\
\text { kfork } l r & =\text { hfork } 1 \text { r } z
\end{aligned}
\end{aligned}
$$

$$
=\text { fst } \circ g(k l e a f, k f o r k) \$ c
$$

where

$$
\text { kleaf } \mathrm{n}=\text { hleaf } \mathrm{n} \mathrm{z}
$$

where
\square

The proof (2)

$$
\begin{aligned}
& =\text { fst } \circ g(k l e a f, k f o r k) \$ c \\
& \text { where } \\
& z \quad=\text { snd o g (Leaf,Fork) \$ c } \\
& \text { kleaf } n=h l e a f n z \\
& \text { kfork } 1 \mathrm{r}=\text { hfork } 1 \mathrm{r} \mathrm{z} \\
& =\text { fst } \circ \text { g (kleaf,kfork) \$ c } \\
& \text { where } \\
& z \quad=\text { snd o g (kleaf,kfork) \$c } \\
& \text { kleaf } n=h l e a f n z \\
& \text { kfork } 1 \text { r hfork } 1 \text { r } z
\end{aligned}
$$

where

The proof (2)

```
= fst o g (kleaf,kfork) $ c
    where
            z = snd o g (Leaf,Fork) $ c
            kleaf n = hleaf n z
            kfork l r = hfork l r z
= fst o g (kleaf,kfork) $ c
    where
            z = snd o g (kleaf,kfork) $ c
            kleaf n = hleaf n z
            kfork l r = hfork l r z
= v
    where
                (v,z) = g (kleaf,kfork) c
                kleaf n = hleaf n z
        kfork l r = hfork l r z
```


Conclusions

- Calculational approach to circular programming

1. Intermediate Structure Deforestation
2. Multiple Traversal Elimination

- Our Calculational Rule is in the style of shortcut fusion

1. Easy to apply
2. Effective
3. Proved correct

Conclusions

- Calculational approach to circular programming

1. Intermediate Structure Deforestation
2. Multiple Traversal Elimination

- Our Calculational Rule is in the style of shortcut fusion

1. Easy to apply
2. Effective
3. Proved correct

Conclusions

- Like the usual fold/build rule, our rule can also be implemented in GHC using the RULES pragma (rewrite rules).
- Bad news: In Haskell our rule we presented is morally correct only.
- surjective pairing is not valid in Haskell due to the presence of lifted products: $\perp \neq(\perp, \perp)$
- and this property is an essential step in the proof of the rule

Conclusions

- Like the usual fold/build rule, our rule can also be implemented in GHC using the RULES pragma (rewrite rules).
- Bad news: In Haskell our rule we presented is morally correct only.
- surjective pairing is not valid in Haskell due to the presence of lifted products: $\perp \neq(\perp, \perp)$
- and this property is an essential step in the proof of the rule

