Guarded and Mendler-Style (Co)Recursion
in Circular Proofs

Tarmo Uustalu, Institute of Cybernetics

Joint work with
Varmo Vene, University of Tartu

Theory Days at Vanadue, 28-30 Sept. 2007

Motivation: Total/terminating functional programming

@ There are reasons to dream about total/terminating
functional programming, where programs denote total
functions and terminate.

o In type-theoretic settings, where programs and proofs are
identified, this is unavoidable (proofs must be
total /terminating).

o In simpler settings this can mean a simpler semantic discourse
(eg, set-theoretic instead of domain-theoretic).

e And why should it be necessary to support partiality in a
language where we only want to program total functions?

@ Some approaches and implementations exist, eg,
D. A. Turner's strong functional programming, Cockett's
CHARITY, the various type-theoretic languages, but none are
fully satisfactory because. ..

General recursion

@ ...the challenge is to ban general recursion, ie, definitions

without making programming impossible or unfeasible.

@ General recursion is problematic because the

totality /termination of a generally recursive definition is not
decidable.

@ A possibility would be to rely on some sufficient conditions.

Structured (co)recursion
@ For most total/terminating programming however, general
general recursion is not necessary, it is only a convenience.
@ One can do with tamed forms of general recursion:
e structured recursion, for defining functions consuming
inductive data, eg, exp : Nat = Int,
expo = 1
exp (s x)

2 % exp x

e structured corecursion, for defining functions producing
coinductive data, eg, from : Int = Strnt,

fromn = n:from(n+1)

where the meaning of the word “structured” is flexible,
ranging from iteration and coiteration and primitive
(co)recursion to . ..

Conventional vs guarded vs Mendler-style (co)recursion

@ Structured (co)recursors (fold, unfold, primitive (co)recursion
etc) in their conventional form are not an option, they are
impractical, although semantically clean.

@ Alternatives:

o Guarded (co)recursors: general recursion like behaviour, but
syntactic conditions ensure conformance to a structured
recursion scheme, messy theoretically.

e Mendler-style (co)recursors: similar, but conformance to a
structured (co)recursion scheme is enforced by more restrictive
typing, combine the benefits of conventional and guarded
combinators.

This talk: Circular proofs

@ A problem with structured (co)recursion is that nothing seems
to tell us how far to go, the choice of the structured
(co)recursion scheme to support is not canonical.

e Circular proofs are nonstandard kind of sequent calculi — with
rational instead of wellfounded derivations — for classical
predicate/modal logics with (co)inductive definitions.

@ We show that two equivalent definitions of an analogous
intuitionistic propositional sequent calculus lead to canonical
term calculi for guarded resp Mendler-style (co)recursion.

@ The known relation between Mendler-style and conventional
structured recursion gives a syntactic embedding of the
circular sequent calculus into the conventional, Park-style
sequent calculus.

Conventional-style (co)recursion

@ A combinator calculus for with (co)inductive types and
conventional-style (co)recursion is obtained from simply typed
lambda calculus like this:

e We introduce a type former p : (* = %) = * which we only
allow to be applied to positive type transformers.

e We also introduce a combinator in : F(uF) = uF as the
constructor and a combinator

iter: (FC=C)=puF==C
for iteration with the reduction rule
iters(int) > s(map(iters)t)

where map : (A= B) = F A= F B is the functoriality
witness of F (as F is positive, it has a canonical such).

@ Similarly we also introduce the former of inductive types v,
and the destructor and coiterator out, coit.

e Eg, F =AX.1+ X, Nat = uF, [o,s] = in.
@ Suppose we want to define exp : Nat = Int by

expo = 1

exp(sx) = 2xexpx
@ We can define

exp = iter(Ay 1T case(y, A(). 1, \y". 2 % y))

Guarded (co)recursion

@ Alternatively, we could introduce a guarded combinator
giter : (uF = C) = F(uF)= C) = puF = C

that can only be applied to abstractions Af Ax r where only
the puF-components of x can be used as arguments of f in r
and that is their only allowed usage.

(This is informal and the formal condition is hard to state
correctly.)

@ giter would come with the reduction rule
giter s(int) > s(giters)t

ie, reduce as general recursion (modulo the constructor in).

e Eg, we should be able to define
exp = giter (AFNIEZINEN TN case(x, () 1, Ax. 2 % £ X))
@ But then, why cannot we alternatively define
exp = giter (A\FNIFZINE TN case(x, \() 1, AX'. (\g. 2xg X) F))

etc?

Mendler-style (co)recursion

@ N. P. Mendler realized that the flow of data from x into f in
the abstraction body r in giter(AfAx r) is better controlled by
a tighter typing.

@ The Mendler-style combinator miter is typed

miter: (VY (Y= C)=F(Y)=C)=u(F)=C
rather than
(WF=C)=F(uF)=C)=u(F)=C
and the reduction rule remains
miter s(int) > s(miter s)t

@ This has a clean semantic justification via the Yoneda lemma.
o Eg, exp = giter (Af Y =M\ 1Y case(x, A(). 1, Ax. 2 % f X')).

Park-style sequent calculus for (co)inductive types with
(co)iteration

@ To the sequent calculus of IPL one adds the inference rules

I — F(uF) R rF(IIr=¢) —=«¢
r—uf " M uF— C
(stating that uF is a prefixpoint and a least such).
@ The term calculus has a conventional-style (co)iterator.

@ A similar Park-style calculus is possible for, eg, primitive
(co)recursion.

Calculus of circular proofs (guarded version)
@ To the sequent calculus of IPL one adds the inference rules

I — F(uF) M F(uF) — C

B ruF ¢ M-

(stating only that uF is a pre- and postfixpoint of F)

and redefines that a derivation is a rational tree (ie, an infinite
tree with a finite number of distinct subtrees), subject to a
wellformedness condition.

@ These derivations are subject to a wellformedness (syntactic
guardedness) condition: every infinite path in a derivation
must contain a u-subformula occurrence trace passing
through infinitely many pL* inferences with that subformula
as the main formula.

@ Intuition: Infinite paths satisfying the condition correspond to
impossible cases, so they “don’t matter”, and infinite paths
falsifying the condition are forbidden.

@ With a standard, wellfounded notion of a derivation, we can
achive the same with inference rules

MuF— C
r— F(pF) rF(uF) — C r
— uF MuF— C a

(where the pL-rule is higher-order) and a modified
wellformedness condition that, in any uL-inference, the
pu-formula occurrences of the conclusion and of any
occurrence of the hypothesis are on the same trace.

@ The path segments from the premise and to occurrences of
the hypothesis represent cycles in the rational tree.

@ The term calculus is with guarded (co)recursion.

Calculus of circular proofs (Mendler-style version)

@ With Mendler's idea of tracking flow with quantified types we
can reformulate the version with higher-order inference rules

like this:
Fo, uF — Go
I, Yo — G
NnYy—~C 0 [po,co] 0
F s () M FY, — C
—
2 R [Yo] ulo

r—ur V M uF —C

@ ...except that this is not general enough, we also need this
rule:

rla YO — Cl

rla Yl — Cl
r07 Y]. I CO . [F1.G]

|_07 FY1—> Co
Fo,uF — Go [vi]

Mo, Yo — Go Mo, Yo — Go
NYe—~C [Fo,Go] . [Fo,Co]

[FYy, — C
[Yo] r
ruF —c M1

and similarly also rules pLs, ...

@ This is primitive recursion with simultaneous subsidiary
primitive recursion on structurally smaller arguments.

@ To express the same we could define the combinators

mxrecp (\V’Yo.(Yo = Cg) = (Yg = ,uF) = FYy = Co)
= /LF = G
mxrec; : (VY0.(Yo= G) = (Yo = uF) = VG.(
((Vyl.(yl = Cl) = (Yl = Yo) = FY1 = Cl)
=Yy => Cl))
)= uF = G

etc with reduction rules

mxrecos(int) > s(mxrecgs)idt
mxrecy s (int) > s(mxrec;s)id mxrecy t

etc.

@ These schemes are of greater direct expressive power than, eg,
course-of-value primitive recursion. They have a semantic
justification in terms of comonadic recursion.

Summary

@ Circular proofs are an interesting kind of sequent calculi with
rational derivations or with higher-order inference rules.

@ The wellformedness condition can be stated as a syntactic
guardedness condition, but also in a better way a la Mendler.

@ This opens a novel avenue for the design of total functional
programming languages, based on sequent calculi instead of
Hilbert systems (combinatory logics) or natural deduction
(lambda-calculi).

