
Guarded and Mendler-Style (Co)Recursion
in Circular Proofs

Tarmo Uustalu, Institute of Cybernetics

Joint work with
Varmo Vene, University of Tartu

Theory Days at Vanaõue, 28–30 Sept. 2007



Motivation: Total/terminating functional programming

There are reasons to dream about total/terminating
functional programming, where programs denote total
functions and terminate.

In type-theoretic settings, where programs and proofs are
identified, this is unavoidable (proofs must be
total/terminating).
In simpler settings this can mean a simpler semantic discourse
(eg, set-theoretic instead of domain-theoretic).
And why should it be necessary to support partiality in a
language where we only want to program total functions?

Some approaches and implementations exist, eg,
D. A. Turner’s strong functional programming, Cockett’s
Charity, the various type-theoretic languages, but none are
fully satisfactory because. . .



General recursion

. . . the challenge is to ban general recursion, ie, definitions

f (x) = Φ(f )(x)

without making programming impossible or unfeasible.

General recursion is problematic because the
totality/termination of a generally recursive definition is not
decidable.

A possibility would be to rely on some sufficient conditions.



Structured (co)recursion

For most total/terminating programming however, general
general recursion is not necessary, it is only a convenience.

One can do with tamed forms of general recursion:

structured recursion, for defining functions consuming
inductive data, eg, exp : Nat ⇒ Int,

exp o = 1

exp (s x) = 2 ∗ exp x

structured corecursion, for defining functions producing
coinductive data, eg, from : Int ⇒ Str Int,

from n = n : from (n + 1)

where the meaning of the word “structured” is flexible,
ranging from iteration and coiteration and primitive
(co)recursion to . . .



Conventional vs guarded vs Mendler-style (co)recursion

Structured (co)recursors (fold, unfold, primitive (co)recursion
etc) in their conventional form are not an option, they are
impractical, although semantically clean.

Alternatives:

Guarded (co)recursors: general recursion like behaviour, but
syntactic conditions ensure conformance to a structured
recursion scheme, messy theoretically.
Mendler-style (co)recursors: similar, but conformance to a
structured (co)recursion scheme is enforced by more restrictive
typing, combine the benefits of conventional and guarded
combinators.



This talk: Circular proofs

A problem with structured (co)recursion is that nothing seems
to tell us how far to go, the choice of the structured
(co)recursion scheme to support is not canonical.

Circular proofs are nonstandard kind of sequent calculi – with
rational instead of wellfounded derivations – for classical
predicate/modal logics with (co)inductive definitions.

We show that two equivalent definitions of an analogous
intuitionistic propositional sequent calculus lead to canonical
term calculi for guarded resp Mendler-style (co)recursion.

The known relation between Mendler-style and conventional
structured recursion gives a syntactic embedding of the
circular sequent calculus into the conventional, Park-style
sequent calculus.



Conventional-style (co)recursion

A combinator calculus for with (co)inductive types and
conventional-style (co)recursion is obtained from simply typed
lambda calculus like this:

We introduce a type former µ : (∗ ⇒ ∗) ⇒ ∗ which we only
allow to be applied to positive type transformers.

We also introduce a combinator in : F (µF ) ⇒ µF as the
constructor and a combinator

iter : (F C ⇒ C ) ⇒ µF ⇒ C

for iteration with the reduction rule

iter s (in t) � s (map (iter s) t)

where map : (A ⇒ B) ⇒ F A ⇒ F B is the functoriality
witness of F (as F is positive, it has a canonical such).

Similarly we also introduce the former of inductive types ν,
and the destructor and coiterator out, coit.



Eg, F = λX . 1 + X , Nat = µF , [o, s] = in.

Suppose we want to define exp : Nat ⇒ Int by

exp o = 1

exp (s x) = 2 ∗ exp x

We can define

exp = iter(λy :1+Int. case(y , λ〈〉. 1, λy ′. 2 ∗ y ′))



Guarded (co)recursion

Alternatively, we could introduce a guarded combinator

giter :: ((µF ⇒ C ) ⇒ F (µF ) ⇒ C ) ⇒ µF ⇒ C

that can only be applied to abstractions λf λx r where only
the µF -components of x can be used as arguments of f in r
and that is their only allowed usage.
(This is informal and the formal condition is hard to state
correctly.)

giter would come with the reduction rule

giter s (in t) � s (giter s) t

ie, reduce as general recursion (modulo the constructor in).



Eg, we should be able to define

exp = giter (λf :Nat⇒Intλx :1+Nat. case(x , λ〈〉 1, λx ′. 2 ∗ f x ′))

But then, why cannot we alternatively define

exp = giter (λf :Nat⇒Intλx :1+Nat. case(x , λ〈〉 1, λx ′. (λg . 2∗g x ′) f ))

etc?



Mendler-style (co)recursion

N. P. Mendler realized that the flow of data from x into f in
the abstraction body r in giter(λf λx r) is better controlled by
a tighter typing.

The Mendler-style combinator miter is typed

miter : (∀Y .(Y ⇒ C ) ⇒ F (Y ) ⇒ C ) ⇒ µ(F ) ⇒ C

rather than

: ((µF ⇒ C ) ⇒ F (µF ) ⇒ C ) ⇒ µ(F ) ⇒ C

and the reduction rule remains

miter s (in t) � s (miter s) t

This has a clean semantic justification via the Yoneda lemma.

Eg, exp = giter (λf :Y⇒Intλx :1+Y . case(x , λ〈〉. 1, λx ′. 2 ∗ f x ′)).



Park-style sequent calculus for (co)inductive types with
(co)iteration

To the sequent calculus of IPL one adds the inference rules

Γ −→ F (µF )

Γ −→ µF
µR

Γ,F (
∏

Γ ⇒ C ) −→ C

Γ, µF −→ C
µL

(stating that µF is a prefixpoint and a least such).

The term calculus has a conventional-style (co)iterator.

A similar Park-style calculus is possible for, eg, primitive
(co)recursion.



Calculus of circular proofs (guarded version)

To the sequent calculus of IPL one adds the inference rules

Γ −→ F (µF )

Γ −→ µF
µR

Γ,F (µF ) −→ C

Γ, µF −→ C
µL?

(stating only that µF is a pre- and postfixpoint of F )
and redefines that a derivation is a rational tree (ie, an infinite
tree with a finite number of distinct subtrees), subject to a
wellformedness condition.

These derivations are subject to a wellformedness (syntactic
guardedness) condition: every infinite path in a derivation
must contain a µ-subformula occurrence trace passing
through infinitely many µL∗ inferences with that subformula
as the main formula.

Intuition: Infinite paths satisfying the condition correspond to
impossible cases, so they “don’t matter”, and infinite paths
falsifying the condition are forbidden.



With a standard, wellfounded notion of a derivation, we can
achive the same with inference rules

Γ −→ F (µF )

Γ −→ µF
µR

Γ, µF −→ C....
Γ,F (µF ) −→ C

Γ, µF −→ C
µL

(where the µL-rule is higher-order) and a modified
wellformedness condition that, in any µL-inference, the
µ-formula occurrences of the conclusion and of any
occurrence of the hypothesis are on the same trace.

The path segments from the premise and to occurrences of
the hypothesis represent cycles in the rational tree.

The term calculus is with guarded (co)recursion.



Calculus of circular proofs (Mendler-style version)

With Mendler’s idea of tracking flow with quantified types we
can reformulate the version with higher-order inference rules
like this:

Γ −→ F (µF )

Γ −→ µF
µR

Γ,Y0 −→ C

Γ0, µF −→ C0

Γ0,Y0 −→ C0
[Γ0,C0]....

Γ,FY0 −→ C
[Y0]

Γ, µF −→ C
µL0



. . . except that this is not general enough, we also need this
rule:

Γ,Y0 −→ C

Γ0, µF −→ C0

Γ0,Y0 −→ C0
[Γ0,C0]

Γ0,Y1 −→ C0

Γ1,Y0 −→ C1

Γ1,Y1 −→ C1
[Γ1,C1]....

Γ0,FY1 −→ C0
[Y1]

Γ0,Y0 −→ C0
[Γ0,C0]....

Γ,FY0 −→ C
[Y0]

Γ, µF −→ C
µL1

and similarly also rules µL2, . . .



This is primitive recursion with simultaneous subsidiary
primitive recursion on structurally smaller arguments.

To express the same we could define the combinators

mxrec0 : (∀Y0.(Y0 ⇒ C0) ⇒ (Y0 ⇒ µF ) ⇒ FY0 ⇒ C0)
⇒ µF ⇒ C0

mxrec1 : (∀Y0.(Y0 ⇒ C0) ⇒ (Y0 ⇒ µF ) ⇒ ∀C1.(
((∀Y1.(Y1 ⇒ C1) ⇒ (Y1 ⇒ Y0) ⇒ FY1 ⇒ C1)
⇒ Y0 ⇒ C1))

) ⇒ µF ⇒ C0

etc with reduction rules

mxrec0 s (in t) � s (mxrec0 s) id t
mxrec1 s (in t) � s (mxrec1 s) id mxrec0 t

etc.

These schemes are of greater direct expressive power than, eg,
course-of-value primitive recursion. They have a semantic
justification in terms of comonadic recursion.



Summary

Circular proofs are an interesting kind of sequent calculi with
rational derivations or with higher-order inference rules.

The wellformedness condition can be stated as a syntactic
guardedness condition, but also in a better way à la Mendler.

This opens a novel avenue for the design of total functional
programming languages, based on sequent calculi instead of
Hilbert systems (combinatory logics) or natural deduction
(lambda-calculi).


