"Inferring parental genomes from offspring's DNA"

Kristo Käärmann, t-days @ Veskisilla '04 joint work with Sven Laur

Talk outline

- What is that `haplotype` and why do we need to know about it?
- Task 1: Identify haploid genomes for person X
 - Family method
 - Computational methods
- Task 2: Reconstruct block structure of human genome
- Further ideas to look into ...

Human genome

- DNA ~ 3.4 billion base pairs
- 99.6% same for all
 - Genetic variation in 10 million SNP-s
 - SNP Single Nucleotide Polymorphism
 - More or less equally distributed
- Genome comes in 2×23 chromosomes
 - Every cell posesses two versions of each chromosome – one from both parents
 - Recombination merges two genomes into one (takes chunks from each)

Block structure ?

- Recombination in large chunks (10 Mb)
 - Size and position of chunks varies
 - Rubik's cube effect
 - hotspots, conserved regions
- Haplotype block: conserved region in DNA (~20-100Kb)
 - tagSNPs: set of polymorphisms that uniquely specify all block alleles
- HapMap project (250 × 400 000 SNPs)
 - Map the block structure of human genome

population

ACACTAGCTTAGACTGCATGAGGAGAGC ACTCTAGATTAGACTGCATGAGGAGAGC ACACTAGCTTAGACTGCATGAGGAGAGC ACTCTAGATTAGACTGGATGAGGAGTGC ACTCTAGATTAGACTGGATGAGGAGTGC ACACTAGCTTAGACTGGATGAGGAGTGC ACACTAGCTTAGACTGCATGAGGAGTGC

Haploid DNA (haplotype) 3,4 x 109

Haplotype & genotype

- Genotyping identifying a base pair (\$0.1 per SNP)
 - In position x is a pair {A,G}
- No reasonable lab method for reading haplotypes – that is two separate sequences {ATG .. TGA, TAG .. GCC}
- Positions that differ in chromosomes are heterozygote SNP-s
- Block structure in haplotypes!

	emalt	isalt
variant 1	GA	TT
variant 2	TA	GT
variant 3	GT	TA
variant 4	TT	GA

Haplotypes by family method

- Requires genotypes from mom-dad-child trios
- 12.5% SNP-s unsolvable by this method
- Expensive, not very accurate

Haplotypes by computation

- No family data required
- Methods require a population to run on
 - Greedy algorithm (parsimony)
 - EM algorithm ('95)
 - Haplotype frequencies in population
 - Markov chains ('01)
 - Gibbs sampling (PHASE)
 - Haplotype inference for every single individual
 - Accurate, slow
 - Phylogeny tree
 - Reconstructing evolution

Testing results

- How to test produced haplotypes?
 - No lab method to test against!
 - Simulating populations over generations
 - 10 random genotypes x10 random mating
 - Thinning
 - Not a trivial task
- PHASE
 - Accuracy on HapMap data: ~98.8%
 - 100 SNP: 3h, 500 SNP: 48h

Sample population

Illustrative experiment

ATAGCTAGACGATAGAATGCTCCCTAG ATACTTGTTCGCTAGCTAGCTTAGATCG ATTCGAGGATCGTAGATGCCCATGATC GATCGAATGCATGCAGGGAGGAAATCG ACTGACTGATGCATGCATGCATCTTACGTACG ATCATCACTAGTCGAGTCAGCAGCATC GACTGACATGCTTGACTCGATGTTGACT ACGTTGCTAGCATCCTCTAGCATCGATC TAGCTGATCGTAGTACGACTGACTGAT GCATTAGCATGC......

20 x 20 monochrome bitmap

400 bits

400 SNPs = 100 kB region

Offsprings from random xxx

Haplotypes by computation

Noise rate: 1.2% = 5 pixels

SNP

~107

Haploid DNA (haplotype) 3,4 x 109

Mapping block structure

- Find conserved regions in DNA, claim tagSNP-s
- Methods
 - Correlation based (four-gamete test)
 - Dynamic programming
 - Mininmum description length (MDL)
- How to test the results?
 - Unsupervised learning ... (generalisation!)

Dynamic progr. (Zhang)

- $S_j = min_{i < j}[S_i + f(i,j)]$
 - Minimising additive cost function
 - f(i,j) = number of tagSNPs, which uniquely identify x% of block [i, j] alleles
 - Block is defined by tagSNPs
- Experimental input:
 - 190 haplotypes (95 individuals)
 - 100 SNPs over 350Kb (~0.01% of DNA)

190 haplotyybi blokistruktuur (10 fold katse)

What is to be done ...

- Haplotype inference
 - Scalability! Processing time exp to segment length
 - Partition-Ligation
 - Hard to merge, overlapping?
 - Parallel processing
- Mapping into blocks
 - Model-based approach
 - How well can we generalise?
- Blocks from genotypes?!