
Differential Algebra and Lazy Coding

(“Automatic Differentiation” techniques in functional sauce. . . )

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen.

Differentiation (rather: derivation) is not an analytic procedure applicable
to functions, but an algebraic operator. We implement it in Haskell. We
show also how to perform the s.c. “inverse mode” differentiation in a curi-
ous computational world, in which the time goes partly backwards.



What is derivation

A numerical program in which all reused variables have been re-
placed by fresh ones, and allif . . . decisions taken (and loops un-
fold), is reducible to a functional chain, which starts with the inde-
pendent variables{x0, x1, . . . , xp}, and then propagates

xp+1 = fp+1(x0, . . . , xp)

xp+2 = fp+2(x0, . . . , xp+1)

. . .

xn = fn(x0, . . . , xn−1)

Thus, we shall consider it as a series of mathematically sound equa-
tions; no “x=x+1 ” will spoil our good humour. We have just arith-
metic expressions belonging – typically – to such domain asReal
or Complex . We know how to performe1 · e2, e1 + e2,

√
1/e, etc.

What could be thederivative e′ (or de) of e?



Wait. . . , we “know” that the derivatives are computed out offunc-
tions, not expressions (values)! There must be a “differentiation
variable” somewhere, and the rest has been learnt at school. . .

No need to underline the importance of derivatives, gradients, tan-
gents, curvatures, etc.All of you needed them one day. But perhaps
you missed the fact that thederivation is just a local operatoract-
ing on any domain with sufficiently rich algebra. It is linear and
satisfies the Leibniz rule:d (e1 + e2) = de1 + de2; d (e1 · e2) =
(de1) · e2 + e1de2. Let’s callde simply e′, provided we defined only
oned (only one “differentiation variable”; otherwised1 etc.).

The rule for(e1/e2)
′ = (e′1e2 − e1e′2)/(e2)

2 comes outautomati-
cally. The rule for

√
e as well, from(

√
e)2 = e. Exponentials, trigs,

etc. –idem, e.g. from the series expansion. In general, a derivation
can be cooked-up in different ways:



Take the domain of matrices (or other linear operators), and define
a special multiplication through the commutator:A ? B = [A, B] =

AB−BA. Introduce a special objectH, and name[A, H] = A′. From
the Jacobi identity[A, [B, C]]+ [B, [C, A]]+ [C, [A, B]] = 0 it is easy
to find the translation(A ? B)′ = A ? B′+ A′ ? B.

Poisson brackets in mechanics are derivations also. Lie derivatives,
covariant ones, etc. in differential geometry as well, even if they are
not “normal” ones. . . .

Sometimes the attempt at construction ofd gives triviality. From
0 + 0 = 0; 1 · 1 = 1 we get0′ = 1′ = 0, and from(n + 1)′ =

n′ + 1′ we see that forall integers the derivatives vanish. Idem for
all rationals, so adopting some natural continuity hypothesis, we see
that anumericdifferential algebra is trivial.



So, what can we do in a numerical programs, if all expressions are
ultimately numbers (and their place-holders)? Are we obliged to
introducesymbolic entities, variablesx, y, meaning “themselves”?
By no means(ei mingil kombel; mitte mingil juhul. . . )

But one of the problems here is that in non-trivial cases, a differen-
tial algebra isinfinitely dimensional. If we can constructe′, then
alsoe′′, e(3), etc., where all these entities may be (and usually are)
algebraically independent!

We propose the following solution, presented for simplicity for 1
generator: one “differentiation variable”, sayx. The generalization
is trivial.

• All constantsc: 2, π, etc. will be lifted to a compound, infinite
structure equivalent to an infinite list[c,0,0, . . .].



• A distinguished expression,the variable, say,x, shall be con-
verted to[x,1,0,0, . . .].

• In general, an expressione semanticallyand structurally is lifted
to something like[e, e′, e′′, . . .]. The derivative of such expression
is its tail.

We will work with expressions, but one may consider thatx is the
parameter of the function whose derivative we compute. Now, can
we really work with infinite sequences? How shall we define the
operations upon them? The answer proposed is simple an effective,
thanks to thelazinessof the used language – Haskell. Although we
have defined somespecialdatatypes, in order not to confound them
with other entities, in this talk we shall use lists:[a, b, c, d, . . .] with
the operator(:) which adds a head to a list:(a : [b, c]) = [a, b, c].



Haskell permits to construct infinite cyclic lists composed of a re-
peated constant, and it makes it possible to combine iteratively such
infinite streams:

ones = 1 : ones

zipWith oper (x:xq) (y:yq) =
(oper x y) : zipWith oper xq yq

instance Num => Num [a] where -- never mind. . .
xl + yl = zipWith (+) xl yl -- overloading

...

It enables theco-recursivealgorithms, such as one which computes
[0,1,2,3, . . .] in the following way:

integs = 0 : (ones + integs)



Yes, it works, forintegs=[0,a,b,c,d,e,f,...] :

1 1 1 1 1 1 1. . .
+ 0 a b c d e f. . .

0 a b c d e f g. . .

You see thata is computable directly, from which we getb, etc.
The magic is that it works automatically, it suffices to traverse the
list from its beginning until the last element needed. The remaining
are never computed.



Please note that we haven’t defined a recursive function, which is
also possible:

integs = ints 0 where
ints n = n : ints (n+1)

but recursive data. This will be now used for the manipulation of
the expressions (numbers) lifted to the stream domain, and consti-
tuting a closed differential algebra. We know already that adding
or subtracting infinite streams does not present any difficulty. What
about the multiplication? We use the following syntactic contraption
in Haskell. A pattern (function argument) which has the structures
and we want that it benamedn, is written asn@s.

Here you are the multiplication withf = [e, e′, e′′, . . .] = (e : ē),
where, naturally,̄e = [e′, e′′, . . .].



f1@(e1 : ē1) · f2@(e2 : ē2) = (e1 · e2 : ē1 · f2 + f1 · ē2)

Division:

f1@(e1 : ē1)/f2@(e2 : ē2) = (e1/e2 : (ē1 · f2 − f1 · ē2)/f2
2)

All the algebraic and transcedental expressions can thus be differen-
tiated using standard, scholar calculus.Note that these formulae
involve infinite, non-terminating recursion!

We underline that we operate uponstructures, compound data, not
symbols. In order to make all it practical, the language should per-
mit the overloading of arithmetic operations. (In Haskell this is
possible thanks to thetype classes.) Here you are some more:√

f@(e : ē) =

(
√

e :
1

2

ē
√

f

)



or, in a bit optimized form:√
(e : ē) = g where g = (

√
e :

ē

2g
)

exp((e : ē)) = g where g = (exp(e) : ē · g)
sin(f@(e : ē)) = (sin(e) : ē · cos(f))

cos(f@(e : ē)) = (cos(e) : −ē · sin(f))

etc. Now we can write any “standard” function definition, say

sinh x = (exp x - exp (negate x))/2

and its application to, say:sinh (1.5 : 1.0 : zeros)
gives the hyperbolic sineandcosine, followed by an infinite number
of higher derivatives: 2.12928, 2.35241, 2.12928, 2.35241,. . . This
is faciliteted because Haskelloverloads automaticallythe numeri-
cal constants, no need to write(1.5 : zeros) for the constant
1.5.



Some applications

A closed algebra permits not only to compute derivatives, but to
usethem in algorithms, e.g. to solve differential recurrences, or to
compute some functions as their Taylor series (not necessarily con-
vergent, below we have[0,1,−2,9,−64,625,−7776,117649 . . .]).

Take the definition of the Lambert functionW (z), which is nasty,
given implicitly by a non-invertible identity:W (z)eW (z) = z. We
can write

dz

dW
= eW (1 + W ) and

dW

dz
=

e−W

1 + W

which gives us the McLaurin expansion ofW in one line:

wl = 0.0 : exp (negate wl / (1.0 + wl))



A differential equationAy′′(x) + By′(x) + Cy(x) is usually solved
for y′′, and integrated twice to gety. But all acquainted with Bessel
functions know that this is difficult in view of singularities forx = 0.
The functionu(x) defined throughu(x2) = x−νJν(x) obeys

u′(x) = −
1

ν + 1

(
x2u′′(x) +

1

4
u(x)

)
.

The only way to find the power series foru is perverted a bit, re-
quiring u (locally) as well asu′′, and to computeu′. This is doable,
because the unknown terms ofu′′ are “protected” byx2, the series
x2u′′ starts as[0,0, a, . . .]. We code, withζ(f) = z · f for z = 0:

ubes = 1.0 : fp where
fp = negate (0.25*ubes + zeta (zeta (df fp))
zeta f = 0.0 (f + zeta (df f))
df (_ : eb) = eb



We could show you some dozen of examples where the laziness is
essential in the structuration of the algorithms, not only for the rep-
resentation of ‘augmented expressions’. After all, lazy data is arep-
resentation of a processrather than a static entity. We shall pass
thus to another way of seing things, to thereverse modeof algorith-
mic differentiation, where expressions transmute to explicit, lazily
evaluatedfunctional objects . Prepare yourselves to one of the crazi-
est programming tricks you ever saw, and yet perfectly natural, and
– in a sense – implemented even in Fortran and used by engineers.

The technique proved its utility mainly inN-dimensional case, for
the solution of sensitivity problems (reactivity of a meteorologic or
industrial process to small changes of initial conditions), but for sim-
plicity we treat a 1-dim context.



Suppose that a program yields some final resultf . Forall variables
x, y (initial and intermediate), we introduce theiradjoints: x̂ =

df/dx, etc. We need the adjoints ofinitial variables. Of course they
cannot be known until the final equationf = . . . (x) . . . is processed.

It is easy (although not entirely trivial) to show that a fragment (def-
inition) in a program:

y = g(xa, xb, . . . , xp)

permits tospecify/update the adjoints of variables at the RHS:

x̂a ← x̂a + ŷ ·
∂g

∂xa
, x̂b ← x̂b + ŷ ·

∂g

∂xb
, etc.

So, in order to computêxa we have to havêy. But this quantity will
be specifiedlater, wheny will be used!



So, the algorithm goes as follows: We trace the program before or
during its execution, and for each definition of a variable wecon-
struct and memorizethe equations for the adjoints of the RHS vari-
ables. They arenot executable yet.

When we construct the final resultf , we have automaticallŷf = 1

(by definition). This permits to construct effectively the adjoints of
all variables upon whichf depends directly. The initial values of
these adjoints are equal to zero.

The sequence of adjoint equations is retraced from the end, down
to the beginning. That’s why they must be stored in a linear data
structure, called usually “the tape”, written forward, but executed
backwards.



Exemple. Our program is

y = sin(x); z = y2 − x/y

with x independent. The adjoint equation set is

z = y2 − x/y; yields x̂← x̂ + ẑ(−1/y);

ŷ ← ŷ + ẑ(2y + x/y2);

y = sin(x); yields x̂← x̂ + ŷ cos(x) .

Finally x̂ = −1/ sin(x) + cos(x)
(
2 sin(x) + x/ sin(x)2

)
is the de-

sired value ofdz/dx, if we begin withx̂ = ŷ = 0.

Now, how to implement this? We want to have a superficially one-
pass algorithm, with no external ‘tapes’, and purely functional, so
the update operator “←” may be a nuisance!



Antitemporal State Monad

This is a digression about the ‘stateful’ programming in functional
framework. How to compute things with side-effects, e.g., an ap-
plication of any function should incrementoneglobal counter? The
answer is based on the monadic approach, but we won’t speak any-
more about monads. Just assume that “things” (data), saye, are
“lifted” to a new domain offunctions which act on some “mysteri-
ous” entity called thestate (which can be the value of the counter).
This function returns apair containing the “normal” value, and, a
possibly modified state (say, the incremented counter).

A piece ofstatic data e (say, a constant) cannot – obviously – do
anything with the state, so it gets lifted intoẽ = λs→ (e, s). In order
to get anything meaningful, we must apply our lifted object to the
current state, and we recover its value, together with the state.



Now, a (normal) functionf which acts one producinge′ = f e

must be augmentedby the user in a way that it acts on the state
as well. In our silly counter modelf becomesf with the semantics
f e s = (f e, s + 1). As simple as that.Here primes are not
derivatives!!

In a more complicated state model, which may pick some informa-
tion from the data and influence the data, we will have in general
g e s = (e′, s′) some new data value, and a new state. What itreally
does depends on the computation the user wants, nobody can decide
for him. YOU define g!

But the system can help tolift such functions so that they can process
other lifted expressions, saỹg = lift g. How such a function works?

g̃ ẽ = λs→ let (e, s′) = ẽ s in g e s′ .



Or, perhaps more verbosely:

g̃ ẽ = λs→ let (e, s′) = ẽ s

(e′, s′′) = g e s′

in (e′, s′′) .

We read it as follows:̃e acts on theinitial state s producing thein-
termediate one(here:s′) which can be equal tos but not necessarily
if ẽ is already a complex form, not a lifted static datum. It produces
also the associated ‘value’e.

Then,g̃ acts (through its hidden kernelg) on this value, and on the
intermediate states′, and produces a changed value, say,e′, associ-
ated with thefinal state s′′. Cool and simple, isn’t it?



Now, fasten your belts. Wadler proposed (casually, without really
thinking hard on its applications. . . ) a version in which the time goes
backwards in the following sense. The functiong̃ is supposed to act
on the final state producing the intermediate one. The expressionẽ

acts on the intermediate state, and recovers the initial one.

But wait: the functioñg needs for its effective execution its ‘prin-
cipal’ argumente, which will be produced bỹe. Unfortunately,ẽ
needs the intermediate state which will be produced byg̃. In two
words:

g̃ ẽ = λs′′ → let (e, s) = ẽ s′

(e′, s′) = g e s′′

in (e′, s) .

Note the cross-referencing betweene ands′. No headache yet? You
are not a human, then. . .



But, believe or not, this is an exotic form of what is known elsewhere
as the calculus of adjoints. The error back-propagation through neu-
ral networks may be represented through this form. The “inverse
kinematics” in animation and robotics, which computes the forces,
tensions and reactions of joints resulting from a given movement,
is a variant of that. Moreover, this kind of crossed, antithetic data
dependencies iswell known in the compilation theory!

It is known that during the parsing process, the “inherited attributes”
(coerced types, contextual and positional information, etc.), go from
the root of the parsing tree towards its leaves. But a LR bottom-up
parsing algorithm marches from the leaves, and it constructs the root
at the end!

We have “two time arrows” in the system, one of which goes against
the other one. . .



The implementation of such concepts is usually donead hoc, but
there is nothing bizarre in it. The crux of the matter is that the “fu-
ture data” are normally not needed immediately, it suffices to have a
“promise” that they will be delivered when the time comes. You can
pay with a doubtful cheque before the end of the month, can’t you?

In the classical treatment of the reverse mode, the program is exe-
cuted, and the adjoint statements are constructed, but not executed,
stored on a “tape”. In our model the adjoints constitute the “state”.

We constructlazy forms, which wait until the adjoints of their chil-
dren will be available, when the children procreate their own. Fi-
nally, the last generation child, the final result, has the adjoint equal
to one, and the evaluation process may be finally effectively exe-
cuted. It will take some time, sometimes a lot of time, but for the
user this is transparent.



The model

We define a special Haskell type

newtype Ldif a = Ld (a->(a,a))

This is the “state monad” tagged by a symbolLd . We introduce two
banal lifting functions for static data, constants andthevariable:

lCnst c = Ld (\z->(c,0))
lDvar x = Ld (\z->(x,z))

The last form says intuitively that ifz = x, then x̂ ← x̂ + ẑ. We
shall define now some lifted forms for the standard functions and
binary operations. Don’t try to memorize them, the construction
was a painful translation of the general idea.



exp (Ld pp)=Ld(\n->let (p,pb)=pp(w*n);w=exp p
in (w,pb))

recip (Ld pp) = Ld(\n -> -- "1/pp"
let (p,pb)=pp eb; w=recip p

eb=negate (w*w)*n
in (w,pb))

sqrt (Ld pp) = Ld(\n ->
let (p,pb)=pp eb; w=sqrt p

eb=(0.5/w)*n
in (w,pb))

and for an arbitrary functionf whoseformal (structural) derivative
f’ is known (e.g., sin→ cos), we have a generic lifting operator

llift f f’ (Ld pp) = Ld (\n ->
let (p,pb)=pp eb; eb=(f’ p)*n in (f p,pb)



It suffices thus to definelog = llift log recip under the
Haskell system of class instances, i.e. for the overloading of log:
lifted, LHS, expressed through the standard logarithm at the RHS.

What about binary functions? This isn’t too difficult neither, just
requires that the programmer know what he is doing. We remind that
an adjoint equation is amodificationof a variable:̂x← x̂ + ŷ · (. . .).
In our construction the lifted operators gather the contributions from
all adjoint equations involvinĝx; they might be numerous, sincex
could have beenusedmany times. We won’t discuss the details for
humanitarian reasons. . .

Finally we get the following definitions, easy to interpret when you
try to construct the adjoint equations from, say,z = x+y, orz = x·y.
At the end of the program one has toapply it to 1.



negate (Ld pp)=Ld (\n ->
let (p,pb)=pp (negate n) in (negate p,pb))

(Ld pp)+(Ld qq) = Ld (\n ->
let (p,pb)=pp n; (q,qb)=qq n
in (p+q, pb+qb) )

(Ld pp)-(Ld qq) = Ld (\n ->
let (p,pb)=pp n; (q,qb)=qq (negate n)
in (p-q, pb+qb) )

(Ld pp)*(Ld qq) = Ld (\n ->
let (p,pb)=pp (n*q); (q,qb)=qq (p*n)
in (p*q, pb+qb) )

(Ld pp)/(Ld qq) = Ld (\n ->
let (p,pb)=pp (recip q*n); (q,qb)=qq eq

eq =negate (p/(q*q))*n
in (p/q, pb+qb) )



Conclusions

All this works, although cannot be considered as an industrial-strength
package, this wasn’t our objective. We have shown two very differ-
ent faces of the power of lazy codes.

Lazy functional programming is an immense fun, inspiring and pro-
found, giving the opportunity to see statically and mathematically
the intricacies of the dynamics, of processes, usually treated imper-
atively. It is an ambitious enterprize if you really want to do some-
thing new, but you might have a chance to discover some common
features of many, apparently unrelated branches of science. The rea-
son is that functional programming relies on strong, generic math-
ematic properties, and when you start exploiting them through con-
crete implementations, it is easier to See the Light.

Thank you. Suur tänu.


