
Implementing quantum abstractions
(Functional objects for quantum algorithms)

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen.

We show how to define abstractstate vectors, their duals, and operators act-
ing on them, as higher-order functions implemented in Haskell. Our model
tries to “put into a computer” the standard quantum entities in a way as modest
as possible, avoiding to invest more information than is permitted by the stan-
dard methodology of the quantum theory. In a sense we force a programmer
to reason as a physicist. . .

Primary Message

The simulation of quantum phenomena is difficult, since our episte-
mology, based on common sense andsensesis classical; wewon’t
ever feelwhat is the quantum superposition of states.

Yet, the idea of “quantum computing” is only partly due to the ex-
istence of (formally) ultra-fast algorithms, like Shor’s (factoriza-
tion of integers) and Grover’s (search). Feynman noticed that apro-
grammablequantum device will be useful for the simulation of other,
complex quantum systems. No quanta without quanta, the complex-
ity barrier is a killer. . .

But computer scientists need some classical intuition, and a bridge
between what they learned from physics books, and their compe-
tence as implementors.

So, they speak about records and arrays representing quantum states,

qubit vectors
(

p

q

)
= p

(
1

0

)
+ q

(
0

1

)
; about conditional statements and

other decisional constructs, they play with the probabilistic reason-
ing (since quantum physics is non-deterministic), and they invent
some “quantum computing languages” named QCL, QFT, etc., sim-
ilar to classical ones. However: one of strengths of modern quantum
theory is the recognition of the fact thatstates and observablesare
physical entitieslargely independent of the observer (of a concrete
representation), despite the fact that for concrete computations some
representation must be chosen. We shall thus try toimplement ab-
stractions. “Quantum states”|ψ〉, etc. And we shall try to compute
with them, as a physicist (or a student) does: formally, yet construc-
tively, getting some numerical results.

We will show how to construct “qubit circuits” such as the “Deutsch
oracle”, or a teleporting contraption:

|0〉

|1〉

H

H

fHmeas.
scratch

|φ〉

|0〉

|0〉

H

H

Rd

A|φ〉

which are essentially compound (tensor) operators acting on quan-
tum states, usingpurely functional entitiesto represent them. We
will show also how to use functions to construct and to implement
recursive formulae, permitting, say, to have a numerical recipe and
the visualisation of the oscillator wave functionhn(x) = 〈x|n〉.

It fulfils

〈x|n〉 =
1
√

2

(√
n〈x|n− 1〉 +

√
(n+ 1)〈x|n+ 1〉

)

h30

−10 −5 0 5 10

−0.4

−0.2

0

0.2

0.4

0.6

x

and can be visualized as above almost directly from Haskell program
(pumping the data into, say, Matlab).

Formal quantisation implemented functionally

The first stage is the construction of a quantum system. We know
that a classical system, or its state is equivalent to a set of observable
quantities. For example, a bit is a Boolean (or equivalent: 0 or 1). A
particle has some position and momentum:(~x, ~p). A spinning rotator
has some angle, and the angular velocity,(ϕ, ω). (Or ~ω if the axis is
free.)

An oscillator can be treated as a particle:(~x, ~p), but we know that
after the quantisation its states can be numbered by a positive integer,
thediscreteexcitation leveln. The rotator needs two integers:j and
m= − j,− j + 1, . . . , j − 1, j to enumerate the states.We know that.

The state of a quantum system is a vector in an abstract linear space
equipped with a positive scalar product (metrics). The components
of those vectors arelabelled with classical quantities, so for aqubit
we shall have two components,v0 andv1. The symbolv has no mean-
ing, and we may follow Dirac:|0〉 and|1〉. The scalar product〈0|φ〉 is
the probability amplitude to obtain the result 0 whilemeasuring
|φ〉. Any vector can be decomposed:|φ〉 = α|0〉 + β|1〉.

We shall introduce Haskell types which will permit to definenatu-
rally such abstract vectors, and their scalar products. We profit from
the fact that the addition operator lifts naturally to the domain of
functions:(f + g)(x) = f x+ g x. Also: c · f (x) = c · (f (x)).

A generalclassicalsystem may be modelled by a data structure de-
scribing some measurable quantities (outputs of experiments)

data Qubit = B0 | B1 deriving Eq -- here and later
data Osc = X Double | P Double | N Integer

| C Complex
data Rotator = Ang Double | JM Integer Integer
...

All those values constitute indices (or labels) of basic vectors in a
metric (Hilbert) space: (eB0 ≡ |B0〉; eB1 ≡ |B1〉 etc.Their interpreta-
tion is up to you! We repeat that withp,q scalars, (usually complex),
there exist objects like

|ψ〉 = p · |B0〉 + q · |B1〉.

We shall use theKolmogorov dilation theorem, we postulate the ex-
istence of the “bracket” (orkernel) which represents the overlap be-
tween identical/different configurations. Its default value (the only
classical one) is the Kronecker delta function, but thereare also
“non-orthogonal” configurations. Identical things yield 1, different
— zero. This is therestrictedorthogonality within the kernel.

class Eq a => Hbase a where
bracket :: a -> a -> Scalar
bracket j k = kdelta j k -- (if j = k then 1 else 0)

instance Hbase Qubit -- etc.
-- sometimes overridden; no negative excitation
instance Hbase Osc where ...

bracket (N j) (N k) | j>=0&&k>=0=kdelta j k
| otherwise = 0

A nice thing happens. Despite the fact thatHbase instances (the
data structures) have no algebraic properties, a partially applied bracket
(renamed:axis=bracket): axis alpha — for any alpha ,
is a vector, an element of a linear space, specified by the class
Vspace containing the additive operations(<+>), (<->) and
the multiplication by a scalar:(*>) .

The instances are constructednaturally:

type HV a = a -> Scalar
instance Vspace (HV a) where

(f <+> g) x = f x + g x
(f <-> g) x = f x - g x
(c *> f) x = c*(f x)

We shall also need operators, which transform vectors:HV a ->
HV a, and multi-linear functions which correspond totensor states
(compound systems). They will also belong to linear spaces through
recursive instances forn-ary functions:

instance (Vspace a) => Vspace (b->a)
(f <+> g) x = f x <+> g x
(f <-> g) x = f x <-> g x
(c *> f) x = c*>(f x)

We can do linear arithmetic on functions, and compute, say,2*>axis
(N 2)<->(1:+1)*>axis(N 0) . This is a finite object related
to 2|2〉 + (1+ i)|0〉, belonging to an infinite-dimensional vector space.

How to make state vectors (Dirac kets)

What can we do with these (co-)vectors, what is their relevance to
quantum physics and to computing?

We interpret(axis α) as aco-vector 〈α|. We will need also the
dual ket base which will give us|β〉’s, permitting to compute the
amplitudes〈α|β〉, and we will be able to programeffectivelyall stan-
dard (formal) calculations in text-book quantum mechanics. Plenty
of results are obtained in an abstract setting, with vectors indepen-
dent of concrete frames (bases).

Amplitudes need the existence oflinear functionalsover our vector
space. Axes are vectors, but as functions they cannot be linear; the
mathematical properties ofHbase are too weak. But the construc-
tion of formally linear functions is easier than you think!

An elementary “ket” corresponding to the valueα, and dual toaxis
alpha is defined as

ket alpha = \ax -> ax alpha -- 〈 ax|α〉

For any ketpsi and axisphi , the construct:(psi phi) is the
form 〈ϕ|ψ〉. Kets are vectors andlinear functionsover axes!:

ket a (ax1 + ax2)=(ax1 + ax2) a=ax1 a + ax2 a
= ket a ax1 + ket a ax2

The scalar product of two kets becomes also possible, since there is
a natural duality operation: conversion of a ket into an axis, which
implements:〈a|b〉 = 〈b|a〉:

(dual kt) alpha = conjugate(kt (axis alpha))

You might appreciate the universality and beauty of the result, ob-
tained without any specific datatypes representing vectors, and with-
out imposing the linear structure by force.

Let’s repeat: functions are natural vectors. Functions which act on
vectors (functions) bycalling them, are naturallylinear functionals.
We got a Hilbert space forany measurablesystem “for free”.

And we might go further with this “bootstrap”, and out of|ψ〉 con-
struct a bi-dual base, general “bras”〈ψ| isomorphic to axesthrough

(coax psi) chi = psi (dual chi)

again, because〈ψ|χ〉 = 〈χ|ψ〉.

A bra can be lowered to an axis (proving the isomorphism). We need

(lower br) alpha = br (ket alpha) -- 〈 br|α〉

The following diagram is commutative.

|aKet〉 〈anAxis|

〈aBra|

dual

coax ket lower

Functions acting on functions taking functional arguments? Are we
mad?. . . Can it be used in practice? Yes, but we shall needoperators
acting on vectors. But first, two words about

Composite systems

To make a vector out of two others, we need to build-up theirtensor
product. We must dynamically construct functions with growing
number of arguments in order to ensure the multi-linearity:

ax1<*>ax2=\alpha beta-> ax1 alpha*ax2 beta
k1<*>k2=\ax1 ax2-> kt1 ax1*kt2 ax2 -- = |k1〉|k2〉

etc. In general case we define the following class which takes into
account that the result type is conditioned by the arguments:

class Tensor v1 v2 v3 | v1 v2 -> v3
where

(<*>) :: v1 -> v2 -> v3

The simplest instance of a tensor is a scalar. Others are specified
recursively:

instance (Vspace v) => Tensor Scalar v v
where

s <*> v = s *> v
instance (Tensor v1 v2 v3)

=> Tensor (a->v1) v2 (a->v3)
where

u <*> v = \x -> u x <*> v

The construction ofentangled states, e.g., |ψ〉 = (|01〉 − |10〉) is
straightforward:

psi = ket B0<*>ket B1 <-> ket B1<*>ket B0

Operators

We need functions operating upon states. Some of them may im-
plement the time evolution. Other are calledobservables, and rep-
resent measurable quantities.All experimental results are the “av-
erages”〈ψ|Â|ψ〉 of an observablêA in the state|ψ〉. The probability
|〈α|ψ〉|2 = 〈ψ|α〉〈α|ψ〉 is the average of the operator|α〉〈α|, the pro-
jector on|α〉. Its Haskell definition isobvious from its visual form:

(ktproj a) psi = psi(axis a)*>ket a -- = |α〉〈α|ψ〉

It is easy to check that it is isomorphic to the tensor product

bra alpha <*> ket alpha -- with
(bra alpha) kt = kt (axis alpha) -- = 〈α| kt〉

Other operators build from projectors or general “warps”:|α〉〈β| are
Haskell one-liners. The Hadamard operatorH = 1√

2

(
1 1
1 −1

)
is de-

fined as1/
√

2(|0〉〈1| + |1〉〈0| + |0〉〈0| − |1〉〈1|), and its coding in Haskell is
literal. The controlled-not gate which corresponds to the transition
|x〉|y〉 → |x〉|x⊕ y〉 has a suggestive definition:

|x〉

|y〉

(cnot psi) ax ay = p B0 + p B1 where
p b = psi (qproj b ax) (qxor (axis b) ay)

-- where
qproj b ax = ax b *> axis b -- |b〉〈b|
qxor r = (r B0) *> id <+> (r B1) *> qnot

The generalized controlled-not, steered by a boolean functionf :
|x〉|y〉 → |x〉| f (x) ⊕ y〉 is defined as

fcnot f psi ax ay = p B0 + p B1 where
p b=psi (qproj b ax)(qxor (axis (f b)) ay)

And we may construct the Deutsch circuit. It is not so horrible. . .

warp alpha beta = \ax ->ax alpha *> axis beta
qnot = warp B0 B1 <+> warp B1 B0 -- |0〉〈1| + |1〉〈0|
sigz = qproj B0 <-> qproj B1 -- |0〉〈0| − |1〉〈1|
ahad = sqrt 0.5 *>(qnot <+> sigz) -- Hadamard...
boost ax_op psi=\ax->psi(ax_op ax) -- (〈 ax|Â|ψ〉)
boost2 aop1 aop2 = (boost aop2 .) . boost aop1
circuit f =

let in1 = (boost2 ahad ahad) (ket B0<*>ket B1)
in boost2 ahad id (fcnot f in1)

The teleporting circuit has a comparable complexity, it remains a
simple functional formula, with some general utilities (aswarp or
bost above), but we shall skip it, since it demands a thorough dis-
cussion of its interpretation. . .

Another example.In order to construct the “annihilation operator”
ann for the base(N n) of the oscillator:â|n〉 =

√
n|n− 1〉 (which

is an infinite sum â =
∑∞

n=0
√

n|n− 1〉〈n|), we define its “twin”:

(ax_ann ax) (N n) = sqrt n * ax (N (n-1))

and we “lift” it: (ann=boost ax ann)

We must here invest more knowledge, standard among physicists,
that the position operator̂x is equal to(â+ + â)/

√
2, and a few other

commonly known relations (e.g., defining the momentump̂ as well).
We can then in three lines write an effective recursive algorithm
which computes in Haskell the oscillator wave function shown be-
fore.

We won’t show the details, since our objective is to suggest that the
formalism is powerful enough to work withinfinitely-dimensional
Hilbert spaces, whose elements cannot be represented through stan-
dard data structures. . .

Conclusions and perspectives

We think that a decent functional language like Haskell is a reason-
able tool for manufacturing anabstract geometrical framework
with very non-trivial interpretation. This can be useful in quantum
mechanics, but also for computations in differential geometry (thus:
in almost all branches of theoretical physics. . .).

We can work effectively withformal entities; the translation be-
tween mathematical formulae and functional programs is short, straight-
forward and quite easy. We tried to show a particular case study
which needs some math rarely taught to computer science students,
and which requires some feeling ofreal, but not always numerical
computational problems of the scientific community. Functional en-
tities are universal and less constraining than “classical” datatypes.

