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Graphs

I/

w

Set of vertices V
(real world: entities)

Set of edges E
::= pairs of vertices
(real world: relations)

Directed graph:
E ::=set of ordered pairs of vertices



| Graph drawin g

+ Started to grow in 1960s, aim —
software understanding

* Now, used in number of areas, for
I example
B

— Software engineering (call graphs, class
diagrams, database schemas)

— Social studies (relationship diagrams)
— Chemistry (molecular structures)




Graph drawing

Definition:

Given a graph G=(V, E), represent the
graph on a plane:

— Vertices — closed shapes

— Edges — Jordan curves between vertex
shapes

(Jordan curve = a closed curve that does not
intersect itself)




+ General

— Min. number of edge
crossings

— Uniform edge
direction (directed
graph)

— Min. number of edge
bends

— Min. area

Aesthetic criteria

* Application-specific
— Specific vertex
shapes (E-R
diagram)
— Specific vertex

locations (class
hierarchy)



Hierachical drawing

Given: a directed acyclic graph

(A cyclic graph can be converted acyclic by
reversing some edges; minimum feedback arc
set is NP hard)

* Objective:
— Uniform edge direction
— Min. Number of edge crossings




Sugiyama algorithm

* Published by Sugiyama, Tagawa, Toda
1981

* Vertices are placed on discrete layers
+ Edges have uniform direction

+ Edges connect vertices of adjacent
layers

* Reduced edge crossings
+ Qverall balance of vertex locations



0. random layout

2. sorting on layers

1. layering

3. final positioning



@ 1. Layering

* Assign vertices to discrete layers so
that the edges point to common
direction

— Longest path layering, shortest path
layering: simple DFS algorithms

— Coffman-Graham layering — constrains the
width of the drawing

B — |ILP approaches (Nikolov, 2002)
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Proper and non-proper layering

Proper Non-Proper

Dummy
vertex
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2. Sorting of vertices on layers

* A combinatorial problem of re-ordering a set
instead of a geometric placement problem

* QObjective: min. edge crossings

* NP-hard even for 2 layers (Eades et al, 19806)
* Heuristics: barycenter, median, stochastic

+ ILP approach
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3. Positioning of vertices

* Objective: balanced positioning,
reduction of edge bends
+ Algorithms:

— Linear Programming method (Sugiyama et
al., 1981)

— Pendulum heuristic (Sander, 1995)
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Our improvement
to Sugiyama algorithm

* We aim to improve the 2" step:
reordering of vertices:

— Find the optimal solution or a solution with
guaranteed quality

— Optimise accross all layers

I — Consider visualising the maximum level
planar subgraph as an alternative to
1 crossing minimisation

I
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Min. crossings vs

max. planar subgraph
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Max.
planar
subgraph

Min.
Crossings
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| ILP - motivation

* Possible to get the optimum result faster than
by complete enumeration

* Known precision of the solution, if a
terminated run

* Applications where quality is important (like
publishing)

* Generation of comparative results for proving
heuristics

B B . Study of the problem from a different angle

I
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ILP vs other approaches

time
[ @ Complete

1P enumeration
@

@ heuristics

' quality
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Linear program - Example

A chemical factory has a line with 3 machines: L
Unit price

x, 100 EEK/t
X, 200 EEK/t

x1 16t/day x1 4t/day x,: 6t/day

4t/d ay .. 6t/day x,: 6t/day
T

Max. dally capacity (exclusively)

B l Find the daily amounts (x, and x,) of products so that the

total price 1s maximal.




[
T

max(100x, +200x,)

subject to:

1 1
A) Exl +4x2 <]

1 1
(B) 4x1+16x2S1

1 1
(C) 6x1+6x2 <1

X,%, 20

Linear program - formulation

100x, +200x,

3.33;x, 2.67\
1 1
—x,+—x, <1
\4 16
\ >
1 2 3 4 X,
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LLP solution methods

+ Simplex method (Dantzig 1947)

— basically a greedy search along the vertices of the
polytope determined by constraints

— polynomially unbounded
— works well in practice

¢+ Ellipsoid (Khachyan 1979) and interior point
(Karmarkar 1984) methods

— polynomially bounded
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Integer Linear program -
Example

A car factory has a line with 3 machines:

Piece price
x, 100 KEEK
x, 200 kEEK

 lopday oy
4p/day X, 6pT/day x,. 6p/day
Max. dally capacity (exclusively)

B l How many (x, and x,) of the different car models must be

manufactured so that the total price will be maximal.
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Integer linear program -
formulation

max(100x, +200x,)
subject to:

1 1
A) —x +-x, <1
(A) ety

1,1
B) jat %

'

1]

(©) éxl +éx2 <1

x,x, 20

x,,Xx, Integral




ILP algorithms

When the solution of a LP-relaxation is
— Integral — we have found the optimal solution

— Fractional — need to define a more constrained
problem




Branch-and-bound algorithm

Solve the initial LP, let LB = cx
Select a fractional variable x=t, and create two subproblems:

|

min{ cx|Ax<b,x; < @ij min{ cx|Ax<b,x; 2 @i@

* For each subproblem, SOLVE, if
« cx > LB K don’t explore this branch

e ¢cx <LB K
« Non-integral x: REPEAT with some x;

* Integral x:

« LB = cx, if no more unexplored subproblems ¥ optimal solution

« x is infeasible ¥ don’t explore this branch
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Branch-and-bound




The lower and upper bounds

Consider a minimisation problem:

| The upper bound = min(cx) over
the integral solutions so far

~Emmmmsmmmmmmnpe

The lower bound = max(cx) over the
not yet branched non-integral

solutions .
»  {ime
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Cutting plane algorithm

Do
1. Solve the LP-relaxation

2. If xis not integral

1. Add a constraint to LP-relaxation that
separates x from the polytope

While x not integral
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Cutting plane
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Branch and Cut

* Based on branch-and bound algorithm

* Each time a subproblem results in a
non-integer solution x, try to find a
cutting plane separating x from the
polytope

* Use only binding constraints for a
subproblem
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Polyhedral combinatorics

Binary vector:
The set of all valid binary vectors: S
Weights vector: c

General combinatorial optimisation problem:

min{ cx subject to x [ S}

Replace 1t with a linear optimisation problem:
B . min{ cx subject to Ax < b}

S=PnZ', P={x0OR":Ax<h
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3 Polyhedral combinatorics

* How to define Ax<b”? This an art!

* The best inequalities are those that
define a facet of the polytope.

+ A facet-defining inequality holds as an
equality for |x| linearly independent
solutions.

31



How to derive an ILP
formulation?

* Derive from the ILP formulation of some similar
problem, e.qg.:
— Multi-level crossing minimisation 7 linear ordering

— Maximum level planar subgraph 2 maximum planar
subgraph

* Analyse smaller problem instances by software.
http://www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/
(PORTA derives from all enumerated solutions the
facets of the polytope supported by these solutions)
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Multi-Level Crossing
Minimisation ILP

Minimise &~ ,
z Ciit
71 (i, )k DOE,

—cr <x =xh <, (,)).(kDOE, j<I

| 1=c, Sx?jﬂ +x;, <l+c, @), (kK,DUE, j<I
e e 1y
x5, ¢ 0{ 0,1




The vertex-exchange graph

. . —r < r+l _ _r < "
Consider the crossing Cijpd =X ji ™ X = Cpua

: .
corcfraints: l=cy, <x;, +x, <l+cy,

They establish relationships U
between linear ordering variables. ri"f’" S
' X=X,
Objects & relationships K Graph X;jﬂ Sl-x
1 = @——@
n

&
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Benefits of V-E graph

* O(|V|?) level planarity testing algorithm
(IEl <2|V]| - 4)

* O(|V]?) layout algorithm for level planar graph

* V-E graph odd/labelled cycle inequalities to
crossing minimisation ILP:

Z ¢’ 21, C -anodd-labelled fundamental cycle in V-E graph
Lc
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Example
(random layout)

96 vertices, 110 edges
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98 crossings
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Example
(ILP layout)

@y G B @ 6 G ) @)

RN 50)E

| @@@@r@@‘@@@ 2
N oy

@@@@@}@i- SRSRORCR

31 crossings

@@@@@@@@IIII
SHODEEoe e

88s on 300MHz DEC AlphaStation 39




41 crossings
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38 crossings, 143s




Independence system

<&

A set E; I is a set of subsets of E,
FOF,OEandF, 0Ol F, 01
K (E,l) is an independence system

« fCUOE,CUOlandforevery FUC, FUI
K Cis a circuit

<&

L 4

maxc x

[, e, LIC
-

subject to:

a,x, ta,x, +..ra,x,=Cl-1, i=12..| |

Determjne the maximum weighted member of I
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Maximum level planar subgraph
ILP

Independent sets — level planar subgraphs
Circuits —minimal level non-planar subgraphs

Given a level graph G=(V,E):

. UE
Maximise ) x, E OE, ¢OE, x, = @: e o
, e

p

Subject to: er < S/-1 S'1s a MLNP subgraph

el lS
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Separation algorithm

Algorithm 6 NaiveSeparation(V, E)

1: '+ F

2: for all e € E' do
3: E'+ E'\ {e}

4:  if LevelPlanar(V, E') then
5: E' + E'U{e}
6: end if
7: end for
8

- return E'




Algorithm 7 InformedSeparation(V, E,V,E)
1: find an odd-labelled cycle C C &

2: C+{e|e,fEE, (e,f) e}

3: return NaiveSeparation(V,C)

Use the edges of the original graph
that induced an odd-labelled cycles
in the vertex-exchange graph
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Primal heuristic

Algorithm 9 ImprovedPrimal(V, E)

10:
11:
12:
13:
14:
15:
16:
17:

:"i“‘f'-:-"!‘.-"!“

G S

: sort E by increasing x,
Ey — E
Enp 0
for all e € K, do
Ep « Ep\ {e}
E,y — Epy U {e}
if Level Planar(V, E,) then
break
end if
end for
for all e € E,,, do
E, + E, U {e}
if not LevelPlanar(V, E,) then
Ep « B, \ {e}
end if
end for

retirn EP

- 1s executed each
time a subproblem i1s
solved.

- The result vector x 1s
employed as weight
function for a greedy
heuristic

2 stages:

4. Removal
5. Adding attempts
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MLP subgraph example - original

I
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6 of 65 edges non-planar
96 inequalities
24s
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| COHCIUSiOIlS

Results Open problems
+ MLNP subgraphs * Specific algorithms for
I + Vertex exchange detecting MLNP
subgraphs?
graph * Can we estimate the
* Improved crossings crossing number by V-E
minimisation ILP graph?
+ Max. planar * Efficiency of ILP-s:
B B  subgraph ILP ~ employ O(n) level

planarity testing
I — bé&c crossing min ILP
|
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Thank you for attention!
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