The ILP approach to the layered graph drawing

Ago Kuusik

Veskisilla Teooriapäevad 1-3.10.2004

Outline

- Introduction
- Hierarchical drawing \& Sugiyama algorithm
- Linear Programming (LP) and Integer Linear Programming (ILP)
- Multi-level crossing minimisation ILP
- Maximum level planar subgraph ILP

Graphs

Set of vertices V
(real world: entities)
Set of edges E
::= pairs of vertices
(real world: relations)
Directed graph:
$\mathrm{E}::=$ set of ordered pairs of vertices

Graph drawing

- Started to grow in 1960s, aim software understanding
- Now, used in number of areas, for example
- Software engineering (call graphs, class diagrams, database schemas)
- Social studies (relationship diagrams)
- Chemistry (molecular structures)

Graph drawing

Definition:
Given a graph $G=(V, E)$, represent the graph on a plane:

- Vertices - closed shapes
- Edges - Jordan curves between vertex shapes
(Jordan curve = a closed curve that does not intersect itself)

Aesthetic criteria

- General
- Min. number of edge crossings
- Uniform edge direction (directed graph)
- Min. number of edge bends
- Min. area
- Application-specific
- Specific vertex shapes (E-R diagram)
- Specific vertex locations (class hierarchy)

Hierachical drawing

Given: a directed acyclic graph
(A cyclic graph can be converted acyclic by reversing some edges; minimum feedback arc set is NP hard)
Objective:

- Uniform edge direction
- Min. Number of edge crossings

Sugiyama algorithm

- Published by Sugiyama, Tagawa, Toda 1981
- Vertices are placed on discrete layers
- Edges have uniform direction
- Edges connect vertices of adjacent layers
- Reduced edge crossings
- Overall balance of vertex locations

0 . random layout

(a)

(c)
2. sorting on layers

1. layering

(b)

(d)
2. final positioning

1. Layering

- Assign vertices to discrete layers so that the edges point to common direction
- Longest path layering, shortest path layering: simple DFS algorithms
- Coffman-Graham layering - constrains the width of the drawing
- ILP approaches (Nikolov, 2002)

Proper and non-proper layering

Proper

Non-Proper

2. Sorting of vertices on layers

- A combinatorial problem of re-ordering a set instead of a geometric placement problem
- Objective: min. edge crossings
- NP-hard even for 2 layers (Eades et al, 1986)
- Heuristics: barycenter, median, stochastic
- ILP approach

3. Positioning of vertices

- Objective: balanced positioning, reduction of edge bends
- Algorithms:
- Linear Programming method (Sugiyama et al., 1981)
- Pendulum heuristic (Sander, 1995)

Our improvement

to Sugiyama algorithm

- We aim to improve the $2^{\text {nd }}$ step: reordering of vertices:
- Find the optimal solution or a solution with guaranteed quality
- Optimise accross all layers
- Consider visualising the maximum level planar subgraph as an alternative to crossing minimisation

Min. crossings vs max. planar subgraph

(a)

Min.
crossings

ILP - motivation

- Possible to get the optimum result faster than by complete enumeration
- Known precision of the solution, if a terminated run
- Applications where quality is important (like publishing)
- Generation of comparative results for proving heuristics
- Study of the problem from a different angle

ILP vs other approaches

time	Complete enumeration
o heuristics	
	quality

Linear program - Example

A chemical factory has a line with 3 machines:
Unit price

Max. daily capacity (exclusively)
Find the daily amounts (x_{1} and x_{2}) of products so that the total price is maximal.

Linear program - formulation

$\max \left(100 x_{1}+200 x_{2}\right)$
subject to:
(A) $\frac{1}{16} x_{1}+\frac{1}{4} x_{2} \leq 1$
(B) $\frac{1}{4} x_{1}+\frac{1}{16} x_{2} \leq 1$
(C) $\frac{1}{6} x_{1}+\frac{1}{6} x_{2} \leq 1$
$x_{1}, x_{2} \geq 0$

LP solution methods

- Simplex method (Dantzig 1947)
- basically a greedy search along the vertices of the polytope determined by constraints
- polynomially unbounded
- works well in practice
- Ellipsoid (Khachyan 1979) and interior point (Karmarkar 1984) methods
- polynomially bounded

Integer Linear program Example

A car factory has a line with 3 machines:
Piece price

Max. daily capacity (exclusively)
How many (x_{1} and x_{2}) of the different car models must be manufactured so that the total price will be maximal.

Integer linear program formulation

$\max \left(100 x_{1}+200 x_{2}\right)$
subject to:
(A) $\frac{1}{16} x_{1}+\frac{1}{4} x_{2} \leq 1$
(B) $\frac{1}{4} x_{1}+\frac{1}{16} x_{2} \leq 1$
(C) $\frac{1}{6} x_{1}+\frac{1}{6} x_{2} \leq 1$
$x_{1}, x_{2} \geq 0$
x_{1}, x_{2} integral

ILP algorithms

When the solution of a LP-relaxation is

- Integral - we have found the optimal solution
- Fractional - need to define a more constrained problem

Branch-and-bound algorithm

Solve the initial LP, let $L B=c x$
Select a fractional variable $x_{i}=t_{i}$ and create two subproblems:

$$
\min \left\{c x \mid A x \leq b, x_{i} \leq\left\lfloor t_{i}\right\rfloor\right\} \quad \min \left\{c x \mid A x \leq b, x_{i} \geq\left\lceil t_{i}\right\rceil\right\}
$$

- For each subproblem, SOLVE, if
- $c x>L B<$ don't explore this branch
- $c x<L B \quad$ K
- Non-integral x : REPEAT with some x_{j}
- Integral x :
- $L B=c x$, if no more unexplored subproblems \boldsymbol{L} optimal solution
- x is infeasible \boldsymbol{K} don't explore this branch

Branch-and-bound

The lower and upper bounds

Consider a minimisation problem:

Cutting plane algorithm

Do

1. Solve the LP-relaxation
2. If x is not integral
3. Add a constraint to LP-relaxation that separates x from the polytope
While x not integral

Cutting plane

Branch and Cut

- Based on branch-and bound algorithm
- Each time a subproblem results in a non-integer solution x, try to find a cutting plane separating x from the polytope
- Use only binding constraints for a subproblem

Polyhedral combinatorics

Binary vector:

$$
x
$$

The set of all valid binary vectors: S
Weights vector:
General combinatorial optimisation problem:

$$
\min \{c x \text { subject to } x \in S\}
$$

Replace it with a linear optimisation problem:

$$
\begin{gathered}
\min \{c x \text { subject to } A x \leq b\} \\
S=P \cap \mathbf{Z}^{n}, \quad P=\left\{x \in \mathbf{R}^{n}: A x \leq b\right\}
\end{gathered}
$$

Polyhedral combinatorics

- How to define $A x \leq b$? This an art!
- The best inequalities are those that define a facet of the polytope.
- A facet-defining inequality holds as an equality for $|x|$ linearly independent solutions.

How to derive an ILP formulation?

- Derive from the ILP formulation of some similar problem, e.g.:
- Multi-level crossing minimisation π linear ordering
- Maximum level planar subgraph $\boldsymbol{\pi}$ maximum planar subgraph
- Analyse smaller problem instances by software.
http://www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/
(PORTA derives from all enumerated solutions the facets of the polytope supported by these solutions)

Multi-Level Crossing Minimisation ILP

Minimise $\sum_{r=1}^{T-1} \sum_{(t, j)(t, k) E, E_{r}} c_{r v t}^{r}$
Subject to $-c_{i j k l}^{r} \leq x_{j l}^{r+1}-x_{i k}^{r} \leq c_{i j k l}^{r}(i, j),(k, l) \in E_{n}, j<l$

The vertex-exchange graph

Consider the crossing conntraints:

$$
-c_{i j k l}^{r} \leq x_{j l}^{r+1}-x_{i k}^{r} \leq c_{i j k l}^{r}
$$

$$
1-c_{i j k l}^{r} \leq x_{l j}^{r+1}+x_{i k}^{r} \leq 1+c_{i j k l}^{r}
$$

(r) They establish relationships between linear ordering variables.

$$
\begin{aligned}
& \text { If } c_{i j k l}^{r}=0: \\
& x_{j l}^{r+1}=x_{i k}^{r} \\
& x_{l j}^{r+1}=1-x_{i k}^{r}
\end{aligned}
$$

Level planarity testing

Benefits of V-E graph

- $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ level planarity testing algorithm

$$
(|E|<2|V|-4)
$$

- $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$ layout algorithm for level planar graph
- V-E graph odd/labelled cycle inequalities to crossing minimisation ILP:
$\sum_{c_{i j k}^{r} \in C} c_{i j h}^{r} \geq 1, \quad C$ - an odd-labelled fundamental cycle in V-E graph

Example
 (random layout)

96 vertices, 110 edges

Example (Sugiyama layout)

Example (ILP layout)

31 crossings

Example

 (Gansner et al., '93)

Example (ILP)

38 crossings, 143s

Independence system

- A set $E ; I$ is a set of subsets of E,
- $F_{1} \subseteq F_{2} \subseteq E$ and $F_{2} \in I k F_{1} \in I$
- $\boldsymbol{K}(E, I)$ is an independence system
- If $C \subseteq E, C \notin I$ and for every $F \subset C, F \in I$
$K C$ is a circuit
Determine the maximum weighted member of \boldsymbol{I} : $\max c^{\prime} x$
subject to:

$$
\begin{aligned}
& a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i|E|} x_{1 \in}=\left|C_{i}\right|-1, \quad i=1,2 \ldots, \mid \\
& a_{i j}=\left\{\begin{array}{l}
0, e_{j} \notin C_{i} \\
1, e_{j} \in C_{i}
\end{array}\right.
\end{aligned}
$$

Maximum level planar subgraph ILP

Independent sets - level planar subgraphs
Circuits -minimal level non-planar subgraphs

Given a level graph $G=(V, E)$:
Maximise $\quad \sum x_{e}$
$E_{p} \subset E, \quad e \in E, \quad x_{e}= \begin{cases}1, & e \in E_{p} \\ 0, & e \notin E_{p}\end{cases}$
Subject to: $\quad \sum_{e \in S} x_{e} \leq|S|-1 \quad S$ is a MLNP subgraph

MLNP subgraphs - trees

MLNP subgraphs - LNP cycles

MLNP subgraphs - LP cycles +

 paths
(a)

Separation algorithm

$$
\begin{aligned}
& \hline \text { Algorithm } 6 \text { NaiveSeparation }(V, E) \\
& \hline 1: E^{\prime} \leftarrow E \\
& \text { 2: for all } e \in E^{\prime} \text { do } \\
& \text { 3: } \quad E^{\prime} \leftarrow E^{\prime} \backslash\{e\} \\
& \text { 4: if } \text { LevelPlanar }\left(V, E^{\prime}\right) \text { then } \\
& \text { 5: } \quad E^{\prime} \leftarrow E^{\prime} \cup\{e\} \\
& \text { 6: end if } \\
& \text { 7: end for } \\
& \text { 8: return } E^{\prime}
\end{aligned}
$$

Using odd-labelled cycles of V-E graph

```
\(\overline{\text { Algorithm } 7 \text { InformedSeparation }(V, E, \mathcal{V}, \mathcal{E})}\)
    1: find an odd-labelled cycle \(\mathcal{C} \subseteq \mathcal{E}\)
    2: \(C \leftarrow\{e \mid e, f \in E,\langle e, f\rangle \in \mathcal{C}\}\)
    3: return NaiveSeparation \((V, C)\)
```

Use the edges of the original graph that induced an odd-labelled cycles in the vertex-exchange graph

Primal heuristic

```
Algorithm 9 ImprovedPrimal \((V, E)\)
1: sort \(E\) by increasing \(x_{e}\)
2: \(E_{p} \leftarrow E\)
3: \(E_{n p} \leftarrow \emptyset\)
4: for all \(e \in E_{p}\) do
5: \(\quad E_{p} \leftarrow E_{p} \backslash\{e\}\)
6: \(\quad E_{n p} \leftarrow E_{n p} \cup\{e\}\)
7: if LevelPlanar \(\left(V, E_{p}\right)\) then
8: break
9: end if
10: end for
11: for all \(e \in E_{n p}\) do
12: \(\quad E_{p} \leftarrow E_{p} \cup\{e\}\)
13: if not LevelPlanar \(\left(V, E_{p}\right)\) then
14: \(\quad E_{p} \leftarrow E_{p} \backslash\{e\}\)
15: end if
16: end for
17: return \(E_{p}\)
\[
\text { 14: } \quad E_{p} \leftarrow E_{p} \backslash\{e\}
\]
15: end if
16: end for
17: return \(E_{p}\)
```

- is executed each time a subproblem is solved.
- The result vector x is employed as weight function for a greedy heuristic

2 stages:

4. Removal
5. Adding attempts

MLP subgraph example - original

MLP subgraph example - B\&C

24 s

Conclusions

Results

- MLNP subgraphs
- Vertex exchange graph
- Improved crossings minimisation ILP
- Max. planar subgraph ILP

Open problems

- Specific algorithms for detecting MLNP subgraphs?
- Can we estimate the crossing number by V-E graph?
- Efficiency of ILP-s:
- employ O(n) level planarity testing
- b\&c crossing min ILP

Thank you for attention!

