The ILP approach to the layered graph drawing

Ago Kuusik

Veskisilla Teooriapäevad 1-3.10.2004

Outline

- Introduction
- Hierarchical drawing & Sugiyama algorithm
- Linear Programming (LP) and Integer Linear Programming (ILP)
- Multi-level crossing minimisation ILP
- Maximum level planar subgraph ILP

Set of **vertices** V (real world: entities)

Set of edges E ::= pairs of vertices (real world: relations)

Directed graph: E ::= set of **ordered** pairs of vertices

Graph drawing

- Started to grow in 1960s, aim software understanding
- Now, used in number of areas, for example
 - Software engineering (call graphs, class diagrams, database schemas)
 - Social studies (relationship diagrams)
 - Chemistry (molecular structures)

Graph drawing

Definition:

- Given a graph G=(V, E), represent the graph on a **plane**:
 - Vertices closed shapes
 - Edges Jordan curves between vertex shapes
 - (Jordan curve = a closed curve that does not intersect itself)

Aesthetic criteria

- General
 - Min. number of edge crossings
 - Uniform edge
 direction (directed
 graph)
 - Min. number of edge bends
 - Min. area

- Application-specific
 - Specific vertex shapes (E-R diagram)
 - Specific vertex locations (class hierarchy)

Hierachical drawing

Given: a directed acyclic graph

(A cyclic graph can be converted acyclic by reversing some edges; minimum feedback arc set is NP hard)

Objective:

- Uniform edge direction
- Min. Number of edge crossings

Sugiyama algorithm

- Published by Sugiyama, Tagawa, Toda 1981
- Vertices are placed on discrete layers
- Edges have uniform direction
- Edges connect vertices of adjacent layers
- Reduced edge crossings
- Overall balance of vertex locations

(a)

2. sorting on layers

3. final positioning

1. Layering

- Assign vertices to discrete layers so that the edges point to common direction
 - Longest path layering, shortest path layering: simple DFS algorithms
 - Coffman-Graham layering constrains the width of the drawing
 - ILP approaches (Nikolov, 2002)

Proper and non-proper layering

Proper

Non-Proper

2. Sorting of vertices on layers

- A combinatorial problem of re-ordering a set instead of a geometric placement problem
- Objective: min. edge crossings
- NP-hard even for 2 layers (Eades et al, 1986)
- Heuristics: barycenter, median, stochastic
- ILP approach

3. Positioning of vertices

- Objective: balanced positioning, reduction of edge bends
- Algorithms:
 - Linear Programming method (Sugiyama et al., 1981)
 - Pendulum heuristic (Sander, 1995)

Our improvement to Sugiyama algorithm

- We aim to improve the 2nd step: reordering of vertices:
 - Find the optimal solution or a solution with guaranteed quality
 - Optimise accross all layers
 - Consider visualising the maximum level planar subgraph as an alternative to crossing minimisation

Min. crossings vs max. planar subgraph

ILP - motivation

- Possible to get the optimum result faster than by complete enumeration
- Known precision of the solution, if a terminated run
- Applications where quality is important (like publishing)
- Generation of comparative results for proving heuristics
- Study of the problem from a different angle

ILP vs other approaches

Max. daily capacity (exclusively)

Find the daily amounts $(x_1 \text{ and } x_2)$ of products so that the total price is maximal.

Linear program - formulation

 $\max(100x_1 + 200x_2)$ subject to:

(A) $\frac{1}{16}x_1 + \frac{1}{4}x_2 \le 1$ (B) $\frac{1}{4}x_1 + \frac{1}{16}x_2 \le 1$ (C) $\frac{1}{6}x_1 + \frac{1}{6}x_2 \le 1$ $x_1, x_2 \ge 0$

LP solution methods

- Simplex method (Dantzig 1947)
 - basically a greedy search along the vertices of the polytope determined by constraints
 - polynomially unbounded
 - works well in practice
- Ellipsoid (Khachyan 1979) and interior point (Karmarkar 1984) methods
 - polynomially bounded

Integer Linear program -Example

A car factory has a line with 3 machines:

How many $(x_1 \text{ and } x_2)$ of the different car models must be manufactured so that the total price will be maximal.

Integer linear program - formulation

 $\max(100x_1 + 200x_2)$
subject to:

(A) $\frac{1}{16}x_1 + \frac{1}{4}x_2 \le 1$ (B) $\frac{1}{4}x_1 + \frac{1}{16}x_2 \le 1$ (C) $\frac{1}{6}x_1 + \frac{1}{6}x_2 \le 1$ $x_1, x_2 \ge 0$ x_1, x_2 integral

ILP algorithms

When the solution of a LP-relaxation is

- Integral we have found the optimal solution
- <u>Fractional</u> need to define a more constrained problem

Branch-and-bound algorithm

Solve the initial LP, let LB = cxSelect a fractional variable $x_i = t_i$ and create two subproblems:

 $\min\{cx \mid Ax \le b, x_i \le \lfloor t_i \rfloor\} \quad \min\{cx \mid Ax \le b, x_i \ge \lceil t_i \rceil\}$

- For each subproblem, SOLVE, if
 - $cx > LB \bowtie don't$ explore this branch
 - $cx < LB \lor$
 - Non-integral x: REPEAT with some x_i
 - Integral *x*:
 - LB = cx, if no more unexplored subproblems \checkmark optimal solution
 - x is infeasible \nvdash don't explore this branch

Branch-and-bound

The lower and upper bounds

Consider a minimisation problem:

СХ

The upper bound = min(cx) over the integral solutions so far

> The lower bound = max(cx) over the not yet branched non-integral solutions

Cutting plane algorithm

Do

- 1. Solve the LP-relaxation
- 2. If x is not integral
 - 1. Add a constraint to LP-relaxation that separates *x* from the polytope

While x not integral

Cutting plane

Branch and Cut

- Based on branch-and bound algorithm
- Each time a subproblem results in a non-integer solution x, try to find a <u>cutting plane</u> <u>separating</u> x from the polytope
- Use only <u>binding</u> constraints for a subproblem

Polyhedral combinatorics

Binary vector:xThe set of all valid binary vectors:SWeights vector:c

General combinatorial optimisation problem: $\min\{cx \text{ subject to } x \in S\}$

Replace it with a linear optimisation problem: $\min\{cx \text{ subject to } Ax \le b\}$ $S = P \cap \mathbb{Z}^n, \quad P = \{x \in \mathbb{R}^n : Ax \le b\}$

Polyhedral combinatorics

- How to define $Ax \le b$? This an art!
- The best inequalities are those that define a **facet** of the polytope.
- A facet-defining inequality holds as an equality for |x| linearly independent solutions.

How to derive an ILP formulation?

- Derive from the ILP formulation of some similar problem, e.g.:
 - Multi-level crossing minimisation 7 linear ordering
 - Maximum level planar subgraph maximum planar subgraph
- Analyse smaller problem instances by software. http://www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/
 (PORTA derives from all enumerated solutions the facets of the polytope supported by these solutions)

Consider the crossing $-c_{ijkl}^{r} \le x_{jl}^{r+1} - x_{ik}^{r} \le c_{ijkl}^{r}$ $1 - c_{ijkl}^{r} \le x_{lj}^{r+1} + x_{ik}^{r} \le 1 + c_{ijkl}^{r}$ They establish relationships between linear ordering variables. If $c_{ijkl}^{r} = 0$:

Objects & relationships ∠ Graph

If $c_{ijkl}^{r} = 0$: $x_{jl}^{r+1} = x_{ik}^{r}$ $x_{li}^{r+1} = 1 - x_{ik}^{r}$

Level planarity testing

Benefits of V-E graph

- O(|V|²) level planarity testing algorithm
 (|E| < 2|V| 4)
- O(|V|³) layout algorithm for level planar graph
- V-E graph odd/labelled cycle inequalities to crossing minimisation ILP:

 $\sum_{\substack{c_{ijkl}^r \in C}} c_{ijkl}^r \ge 1, \quad C \text{ - an odd-labelled fundamental cycle in V-E graph}$

Example (random layout)

96 vertices, 110 edges

Example (Sugiyama layout)

38

Example (ILP layout)

31 crossings

88s on 300MHz DEC AlphaStation

Example (Gansner *et al.*, '93)

Example (ILP)

Independence system

- A set E; I is a set of subsets of E,
- $F_1 \subseteq F_2 \subseteq E$ and $F_2 \in I \nvDash F_1 \in I$
- If C ⊆ E, C ∉ I and for every F ⊂ C, F ∈ I
 ∠ C is a *circuit*

Determine the maximum weighted member of I: max $c^T x$

subject to:

$$\begin{split} &a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{i|E|}x_{|E|} = \mid C_i \mid -1, \quad i = 1, 2..., \mid \quad \mid \\ &a_{ij} = \begin{cases} 0, e_j \notin C_i \\ 1, e_j \in C_i \end{cases} \end{split}$$

Maximum level planar subgraph ILP

Independent sets – level planar subgraphs Circuits –minimal level non-planar subgraphs

Given a level graph G=(V,E): Maximise $\sum x_e$ $E_p \subset E$, $e \in E$, $x_e = \begin{cases} 1, & e \in E_p \\ 0, & e \notin E_p \end{cases}$ Subject to: $\sum_{e \in S} x_e \le |S| - 1$ S is a MLNP subgraph

MLNP subgraphs – LNP cycles

MLNP subgraphs – LP cycles + paths

46

Separation algorithm

 $\frac{\text{Algorithm 6 NaiveSeparation}(V, E)}{1: E' \leftarrow E}$

- 2: for all $e \in E'$ do
- 3: $E' \leftarrow E' \setminus \{e\}$
- 4: **if** LevelPlanar(V, E') **then**
- 5: $E' \leftarrow E' \cup \{e\}$
- 6: end if
- 7: end for
- 8: return E'

Using odd-labelled cycles of V-E graph

Algorithm 7 InformedSeparation(V, E, V, \mathcal{E})

- 1: find an odd-labelled cycle $\mathcal{C}\subseteq \mathcal{E}$
- $2: \ C \leftarrow \{e \mid e, f \in E, \ \langle e, f \rangle \in \mathcal{C} \}$
- 3: return NaiveSeparation(V, C)

Use the edges of the original graph that induced an odd-labelled cycles in the vertex-exchange graph

Primal heuristic

Algorithm 9 ImprovedPrimal(V, E)

- 1: sort E by increasing x_e
- 2: $E_p \leftarrow E$
- 3: $E_{np} \leftarrow \emptyset$
- 4: for all $e \in E_p$ do
- 5: $E_p \leftarrow E_p \setminus \{e\}$
- 6: $E_{np} \leftarrow E_{np} \cup \{e\}$
- 7: **if** $LevelPlanar(V, E_p)$ **then**
- 8: break
- 9: end if

10: end for

- 11: for all $e \in E_{np}$ do
- 12: $E_p \leftarrow E_p \cup \{e\}$
- 13: **if** not $LevelPlanar(V, E_p)$ **then**

14:
$$E_p \leftarrow E_p \setminus \{e\}$$

15: end if

16: end for

17: return E_p

- is executed each time a subproblem is solved.
- The result vector *x* is employed as weight function for a greedy heuristic
- 2 stages:
- 4. Removal
- 5. Adding attempts

MLP subgraph example - original

MLP subgraph example – B&C

Conclusions

<u>Results</u>

- MLNP subgraphs
- Vertex exchange graph
- Improved crossings minimisation ILP
- Max. planar subgraph ILP

Open problems

- Specific algorithms for detecting MLNP subgraphs?
- Can we estimate the crossing number by V-E graph?
- Efficiency of ILP-s:
 - employ O(n) level planarity testing
 - b&c crossing min ILP

Thank you for attention!