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Outline

 Introduction
 Hierarchical drawing & Sugiyama 

algorithm
 Linear Programming (LP) and Integer 

Linear Programming (ILP)
 Multi-level crossing minimisation ILP
 Maximum level planar subgraph ILP
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Graphs

Set of vertices V 
(real world: entities)

Set of edges E
::= pairs of vertices
(real world: relations)

Directed graph: 
E ::= set of ordered pairs of vertices
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Graph drawing

 Started to grow in 1960s, aim – 
software understanding

 Now, used in number of areas, for 
example
– Software engineering (call graphs, class 

diagrams, database schemas)

– Social studies (relationship diagrams)

– Chemistry (molecular structures)
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Graph drawing

Definition:

Given a graph G=(V, E), represent the 
graph on a plane:
– Vertices – closed shapes

– Edges – Jordan curves between vertex 
shapes

(Jordan curve = a closed curve that does not 
intersect itself)
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Aesthetic criteria

 General
– Min. number of edge 

crossings

– Uniform edge 
direction (directed 
graph)

– Min. number of edge 
bends 

– Min. area

 Application-specific
– Specific vertex 

shapes (E-R 
diagram)

– Specific vertex 
locations (class 
hierarchy)
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Hierachical drawing

Given: a directed acyclic graph
(A cyclic graph can be converted acyclic by 

reversing some edges; minimum feedback arc 
set is NP hard)

 Objective:
– Uniform edge direction

– Min. Number of edge crossings
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Sugiyama algorithm

 Published by Sugiyama, Tagawa, Toda 
1981

 Vertices are placed on discrete layers
 Edges have uniform direction 
 Edges connect vertices of adjacent 

layers
 Reduced edge crossings
 Overall balance of vertex locations
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1. layering0. random layout

2. sorting on layers 3. final positioning
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1. Layering

 Assign vertices to discrete layers so 
that the edges point to common 
direction
– Longest path layering, shortest path 

layering: simple DFS algorithms

– Coffman-Graham layering – constrains the 
width of the drawing

– ILP approaches (Nikolov, 2002)
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Non-Proper

Proper and non-proper layering

Proper

Dummy
vertex
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2. Sorting of vertices on layers

 A combinatorial problem of re-ordering a set 
instead of a geometric placement problem

 Objective: min. edge crossings
 NP-hard even for 2 layers (Eades et al, 1986)
 Heuristics: barycenter, median, stochastic
 ILP approach
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3. Positioning of vertices

 Objective: balanced positioning, 
reduction of edge bends

 Algorithms:
– Linear Programming method (Sugiyama et 

al., 1981)

– Pendulum heuristic (Sander, 1995)
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Our improvement
to Sugiyama algorithm

 We aim to improve the 2nd step: 
reordering of vertices:
– Find the optimal solution or a solution with 

guaranteed quality

– Optimise accross all layers

– Consider visualising the maximum level 
planar subgraph as an alternative to 
crossing minimisation
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Min. crossings vs 
max. planar subgraph

Max.
planar
subgraph

Min.
crossings
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ILP - motivation

 Possible to get the optimum result faster than 
by complete enumeration

 Known precision of the solution, if a 
terminated run

 Applications where quality is important (like 
publishing)

 Generation of comparative results for proving 
heuristics

 Study of the problem from a different angle
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ILP vs other approaches

time

quality

heuristics

Complete 
enumeration

ILP
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Linear program - Example

A chemical factory has a line with 3 machines:

A B C 1x

2x

100 EEK/t

200 EEK/t

x1: 16t/day
x2: 4t/day

x1: 4t/day
x2: 6t/day

x1: 6t/day
x2: 6t/day

Max. daily capacity (exclusively)

Unit price

Find the daily amounts (x1 and x2) of products so that the
total price is maximal.
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Linear program - formulation
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LP solution methods

 Simplex method (Dantzig 1947)
– basically a greedy search along the vertices of the 

polytope determined by constraints

– polynomially unbounded 

– works well in practice

 Ellipsoid (Khachyan 1979) and interior point 
(Karmarkar 1984) methods
– polynomially bounded
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Integer Linear program - 
Example

A car factory has a line with 3 machines:

A B C 1x

2x

100 kEEK 

200 kEEK

x1: 16p/day
x2: 4p/day

x1: 4p/day
x2: 6p/day

x1: 6p/day
x2: 6p/day

Max. daily capacity (exclusively)

Piece price

How many (x1 and x2) of the different car models must be 
manufactured so that the total price will be maximal.
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Integer linear program - 
formulation
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ILP algorithms

 When the solution of a LP-relaxation is
– Integral – we have found the optimal solution

– Fractional – need to define a more constrained 
problem
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Branch-and-bound algorithm

 Solve the initial LP, let LB = cx

 Select a fractional variable xi=ti and create two subproblems:

{ } { }min | , min | ,i i i icx Ax b x t cx Ax b x t≤ ≤ ≤ ≥      

• For each subproblem, SOLVE, if

• cx  > LB   don’t explore this branch

• cx  < LB   

• Non-integral x: REPEAT with some xj

• Integral x:

• LB = cx, if no more unexplored subproblems  optimal solution

• x is infeasible  don’t explore this branch
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Branch-and-bound
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The lower and upper bounds

Consider a minimisation problem:

time

The upper bound = min(cx) over
the integral solutions so far

Consider a minimisation problem

cx

The lower bound = max(cx) over the 
not yet branched non-integral 
solutions
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Cutting plane algorithm

Do

1. Solve the LP-relaxation

2. If x is not integral
1. Add a constraint to LP-relaxation that 

separates x from the polytope

While x not integral
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Cutting plane
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Branch and Cut

 Based on branch-and bound algorithm
 Each time a subproblem results in a 

non-integer solution x, try to find a 
cutting plane separating x from the 
polytope

 Use only binding constraints for a 
subproblem



30

Polyhedral combinatorics

General combinatorial optimisation problem:

{ }min subject to cx x S∈

Binary vector:

The set of all valid binary vectors:

x

S

Replace it with a linear optimisation problem:

{ }min subject to cx Ax b≤

{ }, :n nS P P x Ax b= ∩ = ∈ ≤Z R

Weights vector: c
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Polyhedral combinatorics

 How to define Ax≤b? This an art!

 The best inequalities are those that 
define a facet of the polytope.

 A facet-defining inequality holds as an 
equality for |x| linearly independent 
solutions.
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How to derive an ILP 
formulation?
 Derive from the ILP formulation of some similar 

problem, e.g.:
– Multi-level crossing minimisation  linear ordering

– Maximum level planar subgraph  maximum planar 
subgraph

 Analyse smaller problem instances by software. 
http://www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/

(PORTA derives from all enumerated solutions the 
facets of the polytope supported by these solutions)
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Multi-Level Crossing 
Minimisation ILP
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The vertex-exchange graph

Consider the crossing 
constraints:
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Level planarity testing
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Benefits of V-E graph

 O(|V|2) level planarity testing algorithm 
(|E| < 2|V| - 4)

 O(|V|3) layout algorithm for level planar graph
 V-E graph odd/labelled cycle inequalities to 

crossing minimisation ILP:

1,  - an odd-labelled fundamental cycle in V-E graph
ijkl

r
ijkl

r

c C

c C
∈

≥∑
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Example
(random layout) 

96 vertices, 110 edges
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Example
(Sugiyama layout)

98 crossings
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Example
(ILP layout)

31 crossings

88s on  300MHz DEC AlphaStation
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Example
(Gansner et al., ‘93)

41 crossings
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Example
(ILP)

38 crossings, 143s
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Independence system

 A set E; I is a set of subsets of E, 
 F1 ⊆ F2 ⊆ E and F2 ∈ I  F1 ∈ I
  (E,I) is an independence system

 If C ⊆ E, C ∉ I and for every F ⊂ C, F ∈ I 
 C is a circuit

Determine the maximum weighted member of I:
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Maximum level planar subgraph 
ILP

1e
e S

x S
∈

≤ −∑

ex∑Maximise

Subject to: S is a MLNP subgraph

1,
, ,

0,
p

p e
p

e E
E E e E x

e E

∈
⊂ ∈ =  ∉

Independent sets – level planar subgraphs
Circuits –minimal level non-planar subgraphs

Given a level graph G=(V,E):
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MLNP subgraphs - trees
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MLNP subgraphs – LNP cycles
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MLNP subgraphs – LP cycles + 
paths
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Separation algorithm
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Using odd-labelled cycles of V-E 
graph

Use the edges of the original graph
that induced an odd-labelled cycles 
in the vertex-exchange graph
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Primal heuristic

- is executed each 
time a subproblem is 
solved. 

- The result vector x is 
employed as weight 
function for a greedy 
heuristic

2 stages:
4. Removal
5. Adding attempts
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MLP subgraph example - original
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MLP subgraph example – B&C

6 of 65 edges non-planar
96 inequalities
24s
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Conclusions

Results
 MLNP subgraphs
 Vertex exchange 

graph
 Improved crossings 

minimisation ILP
 Max. planar 

subgraph ILP

Open problems
 Specific algorithms for 

detecting MLNP 
subgraphs?

 Can we estimate the 
crossing number by V-E 
graph?

 Efficiency of ILP-s:
– employ O(n) level 

planarity testing

– b&c crossing min ILP
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Thank you for attention!


