
Secure indexes and other oblivious search

structures

(Privaatne otsing: indeksid ning alternatiivid)

Sven Laur
swen@math.ut.ee

Helsinki University of Technology

Basic motivation

Secure storage problem

• Client Alice does not have skills for data protection.

• Service provider Bob offers:

– easy access,
– long-term integerity protection.

• However, Bob can expose data to third parties.

• Alice needs a system to securely store, retrieve, alter and search data.

Secure indexes 1

Desired and achievable features

• Encryption of stored documents provides confidenciality.

• Access patterns of documents remains unhidden.

– Bob learns which documents are retrieved.
– Bob learns which documents are modified.

• Additional structures allow keyword search over encrypted documents.

– Search structure is generated by Alice.
– Only Alice can start the search.
– The search query is relatively short.
– Most of computations are done by Bob.

Secure indexes 2

Formal specification

KeyGen:

Given public parameters, generate the master key K.

MakeTrapdoor:

Given a word w ∈ S and K, compute a trapdoor Tw.

BuildIndex:

Given a collection of words W ⊆ S and K, compute index IW .

SearchIndex:

Given a trapdoor Tw for a word w ∈ S and an index IW , determine
whether w belongs to W or not, i.e. return 1 for w ∈ W and 0 otherwise.

Secure indexes 3

Informal security requirements

• Bob should learn only search results.

• Indices of similar documents should look uncorrelated.

• It must be hard to generate new trapdoors from revealed ones.

• It must be hard to reconstruct the keyword from trapdoor.

• The system should remain secure even if Bob has total control over the
content of indices.

Secure indexes 4

Formal security game (1)

Setup Phase

Adversary chooses public parameters of the secure index system.

Challenger runs the KeyGen algorithm with the selected parameters
and obtains the master key K.

Query Phase

Adversary can adaptively choose collections of keywords W ⊆ S and
query corresponding indices IW from Challenger.

Adversary can adaptively query trapdoors Tw for all w ∈ S and test
whether an arbitrary index I contains w.

Secure indexes 5

Formal security game (2)

Challenge Phase

Adversary chooses two word collections W0, W1 ⊆ S such that |W0| =
|W1| and no trapdoors have been queried for words w ∈ W0∆W1.

Challenger chooses randomly b ∈ {0, 1} and sends an index IWb
to

Adversary.

Guessing Phase

Adversary can do the same operations as on the Query Phase except
querying the trapdoors Tw for w ∈ W0∆W1.

Adversary should output 0 or 1.

Secure indexes 6

Formal security game (3)

Definition. Indexing scheme I is semantically secure if any reasonable

adversary has a negligible advantage in the guessing game

AdvLR
I (A) := 2 ·

∣

∣

∣

∣

Pr [A outputs correct quess] −
1

2

∣

∣

∣

∣

< ε

• A should complete in t timesteps.

• A can adaptively choose keywords and word collections:

– index queries contain less than q1 words (with repetitions);
– less than q2 trapdoors are revealed;
– challenge collections W0 and W1 contain less than q3 words.

Secure indexes 7

All about Bloom filters

Word mask Collection of words

1: •

2: •

3: •

4: •

1: • • •

2: • • •

3: • • •

4: • • •

• The number of layers determines the rate of false positives.

• The bullet at each layer is chosen by a hash function.

• Bloom filter is history independent.

• Next we make Bloom filters secure.

Secure indexes 8

Z-index scheme

g

g

g

S

Dictionary

h1

h2

hr

Encoding

{0, 1}n

{0, 1}n

{0, 1}n

fK(·)

fK(·)

fK(·)

Tw

t1

t2

tr

BF

u1

u2

ur

z

• Collision resistant hash functions h1, . . . , hr are public.

• The master key K is used to create trapdoor vectors Tw = (t1, . . . , tr).

• Pseudorandom functions gti
(·) give correlation resistance.

Secure indexes 9

Something leaks from Z-index

• If Adversary manages to find collisions hi(w1) = hj(w2) for some
w1, w2 ∈ S.

• If Adversary can predict fK(·), given some freely chosen trapdoors

Tw = [fK(s1), . . . , fK(sr)], si = hi(w).

• If Adversary can predict gti
(·), given some freely chosen values gti

(z).

• If Adversary can invert fK(·).

Secure indexes 10

Correlation resistance

Let trapdoors Tw ∈ {0, 1}
n

be chosen randomly.

• In Query Phase:

– BuildIndex allows to compute gs(z) for (freely chosen) z.
– MakeTrapdoor allows to reveal secret key s, given sequence of

observed plaintext chipertext pairs [z1, gs(z1)], . . . , [zk, gs(zk)].

• In Challenge Phase:

– Adversary chooses two sets of unknown keys {t1, . . . , t`} and
{t′1, . . . , t

′

`}

• In Guessing Phase:

– Adversary must decide whether Challenger chose {t′1, . . . , t
′

`} or
{t′1, . . . , t

′

`}

Secure indexes 11

Multi-key encryption oracle

Oracle Omk
g Commands

t1
t2
...
tn
...

⇐=

Fetch(i, r) = gti
(r)

Reveal(i) = ti

Fetch
∗(i1, . . . , iλ, r) =

{

gxi1
(r), . . . , gxiλ

(r),

y1, . . . , yλ
r
←− Zm.

Function g is strongly indistinguishable iff

Advs-ind
g (A) :=

∣

∣

∣
Pr [AO

mk
g (1) = 1] − Pr [AO

mk
g (0) = 1]

∣

∣

∣
< ε.

Secure indexes 12

Putting things together

Theorem 1. [Informal] Z-index scheme is semantically secure if

• h1, . . . , hk are collision resistant;

• f is a pseudorandom function;

• g is strongly indistinguishable.

Theorem 2. [Informal] If g is a pseudorandom function then it is also

strongly indistinguishable. The security drop is almost proportional to

number of observed keys.

Secure indexes 13

Shared indices. Access control

Alice and Carl want to build a summary index.

• Both of them separately should not be able to create trapdoors.

• Can be implemented with exponentation operation.

Alice allows Carl to search in the search structure.

• Carl should not be able to create trapdoors alone.

• Alice should not learn Carls queries.

• Can be implemented with homomorpic encryption.

Secure indexes 14

More open questions

Usually more complex queries include AND and OR operators.
The Z-index scheme reveals results of individual queries.

• How to construct indexing scheme with AND or OR trapdoors?

– Trivial solutions exist but they do not scale well.

• How to construct efficient oblivious indexing schemes?

– Trivial solutions exist but they do not scale well.

• How to construct hybrid indexing schemes?

– Extremely useful in practice.
– No constructions are published.

Secure indexes 15

