
Design and
Verification in the
ForSyDe Methodology

Tarvo Raudvere
Royal Institute of Technology
tarvo@imit.kht.se

Motivation for ForSyDe

 Trends
 Increasing capacity of integrated circuits allows to

integrate more and more functions on a single chip
 SoC-architectures may include a variety of

components: microprocessors, DSP cores, memories,
custom hardware and analog parts

 Conclusion
 Simulation is not enough
 System-level design methodologies have to

incorporate formal methods

Outline

 Motivation
 Design Flow
 Design Refinement
 Gradual Design Verification
 Verification Example
 Conclusion

ForSyDe (Formal System Design)

 Objective
 Addresses the design of reactive system-on-chip applications

with control and data flow parts

 Foundations
 Start with a purely functional and deterministic system

specification
 Uses a synchronous model of computation
 Uses a functional modeling language with formal semantics
 Allows for formally defined design transformation
 Allows to interpret the system model into a hardware and

software interpretation

The ForSyDe Design Flow
Design

Constraints

Transf.
Library

Verification

Interface
Description

SW
Description

HW
Description

Implementation
 Domain

Implementation Mapping

Specification
ModelFunctional Domain

Implement.
Model

Design Refinement

Specification Model

 Is based on a synchronous model of
computation

 Is purely functional and deterministic
 Uses process constructors
 Uses possibly infinite/ideal data types
 Implies a concurrent process model
 Can be refined during design transformations

Functional Specification
 A system is specified as a

function of the system inputs
 A function can be composed

of the other functions
 A function has no side

effects
 There is no global state
 System inputs are signals
 A functional system

specification is deterministic
 Concurrency is implicit

f

g

h

i1
i2 o1

i3

s1

s2

o1=system (i1,i2,i3)
where

s1 = f (i1,i2)
s2 = g (i3)
o1 = h (s1,s2)

system

Synchronous Assumption

 The system computes infinitely quickly
 Each reaction divides time into a sequence of discrete

instants
 A system reaction to an input appears at the same time

as the input
 The synchronous assumption leads to a clean

separation between communication and computation

v2 v1v3 v’3 v’1 v’1
t3 t2 t1 t3 t2 t1

Process

Event

Values

Tags

Process Constructor

 is a higher-order function
 is used for synchronization
 has a hardware and software

interpretation
 allows for design transformations
 is used to create processes

Process Constructor mapSY

0
2

3
1

2 1
8¿

Signal
Tag

Value Event
Absent
Value

inc¿

Computation

32 9¿
mapSY 03 2 1

Timing

Process

System as a process network

P1

P2

P3

P4 P5

P6

B1

B2

B3

s1

s2

s3

s4

s5

s7

system (s1,s2,s3) = s7

where
s4 = B1 (s1,s2,s6)
s6 = B2 (s3,s5)
(s7,s5) = B3 (s4)

B3 (i1) = (o1,o2)
where

(o1,o2) = P6 (i1)

P6=mealySY(f,g,m0)

f::Int->Int->Int
f a b = (a+b) mod 4

s6

system

Implementation Model

 may contain synchronous sub-domains
 is described in terms of limited resources
 can be mapped to hard- and software (VHDL,C)

Proces
s

Networ
k

Main Domain
(Rate: m)

Proces
s

Networ
k

Main Domain
(Rate: m)

Proces
s

Networ
k

Sub-Domain
(Rate: n)

m

n

Domain Interface

m

n

Refinement of the Specification Model

 Semantic Preserving
Transformation
 Do not change the meaning of the

model

 Used mainly for process merging
and splitting

 Design Decision
Transformation
 Change the meaning of the

model
 Introduce a design decision
 Examples are refinement of

data types, constraining
buffer sizes

M1
T1

M0
Specification

 Model
MnT2 Tn

Implementation
Model

The specification model (M0) is stepwise refined by the
use of well defined design transformation (Ti) into an
implementation model (Mn)

Verification in ForSyDe

 Global properties are verified by
simulation

 Local properties of design blocks can be
checked through model checking

 Design transformation contains
information about the changes in the
model, that can be used to create relevant
verification properties

B1 B2

B3

B1

B3

B’2

Specification
model

Implementation
model

T

Trans-
formation

library

Design
Constraints

Block
B’2

Verification

 Gradual design verification

Input
stimuli
gen.

Input
stimuli

Property
 library

Property
checker

 The specification model is correct
 Only the local correctness of the system is

verified through model checking
 The designer is aware of the constraints for

every design block
 Design blocks are small enough, that existing

verification tools manage the tasks in
reasonable time

Assumptions for gradual verification

Verification Details

 For every design transformation there is a set of
predefined properties

 There are templates to assist the user to model
the design environment for design blocks

 Abstraction has to be done by the user
 The Cadence version of SMV (Symbolic Model

Verifier) is used for verification
 Translation from ForSyDe into SMV is straight

forward

Refinement of the Equalizer System Model

Hold
Level

Level
Control

Button Control

Buttons
Power

Spectrum

Check
Low Freq

Group
Samples

FFT

Audio
Analyzer

Distort.
Control

Dist. Control

FIR1

FIR5

FIR2

Amplifier

Amplifier

Amplifier
Sum

Audio
Filter

AudioIn

AudioOut

Refinement into a Handshake Protocol
V⊥Button

Control

Audio

Filter

Finite
FIFO Send Receive

Transformation: ChannelToHandshake

V⊥ V⊥Button

Control

Audio

Filter

 The handshake protocol introduces a delay between Send
and Receive
 The FIFO buffer stores the input data if the channel is busy
with the previous arrival
 The FIFO size must correspond to the load on the channel

Verified properties

Reliability: The only data loss is caused by
overflow. (1 sec.)

Latency: It takes a fixed number of clock cycles to
transport data through the channel. (0.2 sec.)

Bandwidth: An input stream with a certain data
rate causes no FIFO overflow. (0.2 sec.)

Order: Present values on the channel output
preserves the same order they have on the
input. (400 sec.)

Requirements

 For every new design transformation a set of
properties has to be defined, which are
obligatory to verify

 In order to avoid state space explosion,
abstraction has to be applied.

 The proper abstraction technique should be
selected according to:
 specific design transformation
 the properties that we verify

Conclusion

 The ForSyDe methodology supports formal system
design

 Design flow starts at a high abstraction level
 Design is refined through the well-defined design

transformations
 Implementation can be mapped to soft- and hardware
 Verification is applied during the design refinement

 http://www.ele.kth.se/ForSyDe

Thanks for your attention!

