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Motivation for ForSyDe

 Trends
 Increasing capacity of integrated circuits allows to 

integrate more and more functions on a single chip
 SoC-architectures may include a variety of 

components: microprocessors, DSP cores, memories, 
custom hardware and analog parts

 Conclusion
 Simulation is not enough
 System-level design methodologies have to 

incorporate formal methods
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ForSyDe (Formal System Design)

 Objective
 Addresses the design of reactive system-on-chip applications 

with control and data flow parts

 Foundations
 Start with a purely functional and deterministic system 

specification
 Uses a synchronous model of computation
 Uses a functional modeling language with formal semantics
 Allows for formally defined design transformation
 Allows to interpret the system model into a hardware and 

software interpretation
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Specification Model

 Is based on a synchronous model of 
computation

 Is purely functional and deterministic
 Uses process constructors
 Uses possibly infinite/ideal data types
 Implies a concurrent process model
 Can be refined during design transformations



Functional Specification
 A system is specified as a 

function of the system inputs
 A function can be composed 

of the other functions
 A function has no side 

effects
 There is no global state
 System inputs are signals
 A functional system 

specification is deterministic
 Concurrency is implicit
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Synchronous Assumption

 The system computes infinitely quickly
 Each reaction divides time into a sequence of discrete 

instants
 A system reaction to an input appears at the same time 

as the input
 The synchronous assumption leads to a clean 

separation between communication and computation
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Process Constructor

 is a higher-order function
 is used for synchronization
 has a hardware and software 

interpretation
 allows for design transformations
 is used to create processes
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System as a process network
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system (s1,s2,s3) = s7

where
s4 = B1 (s1,s2,s6)
s6 = B2 (s3,s5)
(s7,s5) = B3 (s4)

B3 (i1) = (o1,o2)
where

(o1,o2) = P6 (i1)

P6=mealySY(f,g,m0)

f::Int->Int->Int
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Implementation Model

 may contain synchronous sub-domains
 is described in terms of limited resources
 can be mapped to hard- and software (VHDL,C)
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Refinement of the Specification Model

 Semantic Preserving
Transformation
 Do not change the meaning of the 

model

 Used mainly for process merging 
and splitting

 Design Decision
Transformation
 Change the meaning of the 

model 
 Introduce a design decision
 Examples are refinement of 

data types, constraining 
buffer sizes
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The specification model (M0) is stepwise refined by the 
use of well defined design transformation (Ti) into an 
implementation model (Mn)



Verification in ForSyDe

 Global properties are verified by 
simulation

 Local properties of design blocks can be 
checked through model checking

 Design transformation contains 
information about the changes in the 
model, that can be used to create relevant 
verification properties
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 The specification model is correct  
 Only the local correctness of the system is 

verified through model checking
 The designer is aware of the constraints for 

every design block
 Design blocks are small enough, that existing 

verification tools manage the tasks in 
reasonable time

Assumptions for gradual verification



Verification Details

 For every design transformation there is a set of 
predefined properties

 There are templates to assist the user to model 
the design environment for design blocks

 Abstraction has to be done by the user
 The Cadence version of SMV (Symbolic Model 

Verifier) is used for verification
 Translation from ForSyDe into SMV is straight 

forward



Refinement of the Equalizer System Model
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Refinement into a Handshake Protocol
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 The handshake protocol introduces a delay between Send 
and Receive
 The FIFO buffer stores the input data if the channel is busy 
with the previous arrival
 The FIFO size must correspond to the load on the channel



Verified properties

Reliability: The only data loss is caused by 
overflow. (1 sec.)

Latency: It takes a fixed number of clock cycles to 
transport data through the channel. (0.2 sec.)

Bandwidth: An input stream with a certain data 
rate causes no FIFO overflow. (0.2 sec.)

Order: Present values on the channel output 
preserves the same order they have on the 
input. (400 sec.)



Requirements

 For every new design transformation a set of 
properties has to be defined, which are 
obligatory to verify

 In order to avoid state space explosion, 
abstraction has to be applied. 

 The proper abstraction technique should be 
selected according to:
  specific design transformation
  the properties that we verify



Conclusion

 The ForSyDe methodology supports formal system 
design

 Design flow starts at a high abstraction level
 Design is refined through the well-defined design 

transformations  
 Implementation can be mapped to soft- and hardware
 Verification is applied during the design refinement

 http://www.ele.kth.se/ForSyDe



Thanks for your attention! 


