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Finite automata

A finite automaton A = (Q, X, 6, I, F') where @ is a finite set of
states, ¥ is the input alphabet, § : Q x ¥ — 29 is the transition
function, I C () is the set of initial states and F' C () is the set of

final states.

An automaton A is deterministic (DFA) if it has a unique initial
state and if for every g € Q) and every a € X, |d(q,a)| < 1.

The general case of automata is nondeterministic (NFA).

The reversal of an automaton A is the automaton
AR =(Q,%, 6", F, I) where 6"(p,a) = {q|p € 6(¢g,a)} for all p € Q
and a € X..



Minimal automata
Minimality with respect to the number of states
Minimization of DFA is efficient, the result is unique

Minimization of NFA is hard, the result is not necessarily

unique
Other methods to obtain small NFAs

Sufficient conditions for minimality among NFAs?



Our results

e bideterministic automata are minimal among NFA

e sufficient conditions for a minimal DFA or the reversed
automaton of the minimal DFA of the reversal language to be

minimal NFA



Bideterministic automata

An automaton A is bideterministic if both A and its reversed

automaton AP are deterministic.




Bideterministic automata

e Known: If A is bideterministic then A is a minimal DFA.
(Easy to show by Brzozowski’s DFA minimization algorithm
min(A) = D((D(A®))E) where D is determinizing by subset

construction)

e New result: If A is bideterministic then A is uniquely minimal
among all automata accepting the same language.



NFA minimization of Kameda and Weiner

Kameda, T., and Weiner, P. On the state minimization of
nondeterministic automata. IEEE Trans. Comput. C-19, 7 (1970),
617-627.

o Let A=(Q,3,9,1,F) be an automaton,
B=D(A)=(Q",%,0,{¢}, F') and
C = D(AR) — (Q”, 275//, {q”},F”).
(The elements of @' and Q" are subsets of ).)

e The states map (SM) of A is a matrix which contains a row for
each nonempty state of B, and a column for each nonempty
state of C. The (4,7) entry contains g; N ¢} (or is blank if
q; N qj =0), where ¢; € Q', ¢} € Q".



NFA minimization of Kameda and Weiner (cont.)

e Two states of B (C) having the same pattern of blank entries
in the corresponding rows (columns) of the SM of A can be

merged. These rows (columns) are called equivalent.

e The reduced states map (RSM) is obtained from the SM by
merging all equivalent rows and columns (by union of

corresponding entries).

e The reduced automaton matriz (RAM) is formed from the RSM
by replacing each nonblank entry with a 1.

Theorem. [Kameda and Weiner| Equivalent automata have a

RAM that is unique up to permutation of the rows and columns.



NFA minimization of Kameda and Weiner (cont.)

e In a RAM, if all the entries at the intersections of a set of rows
and columns are 1’s then this set of 1’s forms a grid.

e A set of grids forms a cover if every 1 in the RAM belongs to
at least one grid in the set.

Theorem. Kameda and Weiner| The states of A appear as a
cover of the RAM of A.

NFA minimization:

e By a special rule, an NFA is associated with any cover of the
RAM

e This NFA may be not equivalent to the original automaton

e To find a minimal automaton, the covers of RAM are tested in

increasing order of their sizes



SM of a bideterministic automaton
Let A=(Q,%,9,{qo},{qs}) be a bideterministic automaton.
Then B = D(A) = A and C = D(A%) = AE,
Let Q — {QO7 "'7Qn—1}-

e The SM of A consists of n rows and n columns, with n
non-blank entries {qo}, ..., {gn_1}, exactly one such entry in

every row and every column.
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RSM and RAM of A
e The RSM of A is equal to SM of A.

e The RAM of A is formed from the RSM by replacing each
nonblank entry with a 1.

C

BX| 1412} {3} {1} B\ 1412} {3} {1}
{1} {1} {1} 1
12} 12} 12} 1

13} 13} 13} 1

14} 14 14p 1
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Bideterministic automata are minimal

2| {412 (3 (1)
There are n grids in the RAM, {1} 1
each grid consisting of single 1; {2} 1
this set of grids is the only cover {3) 1
of the RAM.

{4 |1

Any automaton accepting L(A) has at least as many states as is
the number of grids in the minimum cover of RAM, therefore A is

minimal. O
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Bideterministic automata are uniquely minimal
e A bideterministic automaton is a minimal DFA which is unique.

e Are there any non-deterministic automata of the same size

accepting the same language? No!

e Bideterministic automata are uniquely minimal.
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Other sufficient conditions for minimality?

e For a language accepted by a bideterministic automaton the
size of the minimal DFA is the smallest size of any automaton
accepting that language.

e Other conditions that imply similar minimalities?
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Partitions of automata state sets

Let A be a minimal DFA and let A; = D(A%).
Then A; is the minimal DFA accepting L(A) (by Brzozowski’s
minimization, as A; = D(A®) = D(D(A)®) = D(D((AF)®)E)).

Let @ and Q" be the state sets of A and A;, resp.

Consider a partition {Q7, . »} of Q" such that any pair of states
7 and ¢} of A; belongs to the same Q7,1 € {1 ..., k}, if and only if
there exist states ¢;_,...,q; of Ai such that q, =41, q;, = gy and

g, Ng. ., #0forallj=1,..,1-1.
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Example: a minimal DFA A and A; = D(A®)

Qlll — {{17 2}7 {173}7 {2}7 {3}}
Q7 = {{4}}
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Let Q; = U gj fori=1,...,k, then {Q1, ..., Qx} forms a
q.;IGQ;/
partition of ().

Qlll — {{17 2}7 {17 3}7 {2}7 {3}}

5 = {{4}}
Q1 ={1,2,3}
Q2 = {4}
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Another minimality result

Theorem. Let A be a minimal DFA and let A; = D(A®) such
that either (i) every state of A; consists of at most two states of A,
or (ii) each state of A occurs in at most two states of Aj.

Let {Q1,...,Qr} and {Q7, ..., Q) } be the partitions of the states of
A and A;, respectively, as described above.

If |Q;] <|QY| for all i =1,..., k, then A is a minimal automaton
accepting L(A).

If |QY| < |Q;| for all i =1, ..., k, then A is a minimal automaton

accepting L(A).
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Example: a minimal DFA A and A; = D(A®)

Q7 = ({12}, {1,3}, {2}, {3}}, @z = {{4}}

Q1 =1{1,2,3}, Q2={4}

Both conditions (i) and (ii) of the last Theorem hold.

As |Q1] =3 <4 =1|Qf| and |Q2| =1 = |Q%]| then A is minimal.
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