
Build, Augment and Destroy. Universally

Varmo VENE (Uni. Tartu, Estonia)

Joint work with

Neil GHANI (Uni. Leicester, UK)

Tarmo UUSTALU (Inst. of Cybernetics, Tallinn, Estonia)

Teooriapäevad, Veskisilla, 1 Oct 2004

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Motivation

• The usual in/fold paradigm of programming with inductive

types is very elegant and useful since it is directly based on the

initial algebra semantics,

a universal construction, syntax and equational laws for

programming and reasoning follow directly.

• But in functional programming, in shortcut deforestation, one

also uses build and fold/build fusion, the semantics has been

unclear.

• Related is the question about the adequacy of the “impredicative

encoding” of inductive types (Freyd, Wadler, Hasegawa. . .)

VARMO VENE 2

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Background

• Gill, Launchbury, Peyton Jones (1993) –

– build to capture uniform production of lists.

– foldr/build fusion to eliminate intermediate lists.

– correctness “proved” informally by reference to ”theorems for

free”

• Gill (1996) – augment for lists

• Takano, Meijer (1995) – build for arbitrary inductive types

• Johann (2002, 2003) – correctness proof via parametricity of

contextual equivalence

VARMO VENE 3

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Shortcut deforesation

• Program transformation for automatic removal of intermediate

data structures

• Uses foldr as standard list processing function

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

• List producers are defined using build

build :: (forall x . (a -> x -> x) -> x -> x) -> [a]

build theta = theta (:) []

• foldr/build fusion

foldr f b (build theta) ==> theta f b

VARMO VENE 4

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Shortcut deforesation: example

• Modular (but inefficient) sum of squares:

sumSq :: Int -> Int

sumSq m = sum (map square (upto 1 m))

• Definitions of sum, map and upto

sum = foldr (+) 0

map f xs = build (\ c n ->

foldr (\ x ys -> f x ‘c‘ ys) n xs)

upto i1 i2 = build (\ c n -> upto’ c n i1 i2)

upto’ c n i1 i2

= if i1 > i2 then n

else i1 ‘c‘ upto’ c n (i1 + 1) i2

VARMO VENE 5

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Shortcut deforesation: example

• Transformation

sum (map square (upto 1 m))

==> foldr (+) 0 (build (\ c n ->

foldr (\ x ys -> square x ‘c‘ ys) n (upto 1 m)))

==> foldr (\ x ys -> square x + ys) 0 (upto 1 m)

==> foldr (\ x ys -> square x + ys) 0

(build (\ c n -> upto’ c n 1 m)

==> upto’ (\ x ys -> square x + ys) 0 1 m

• Efficient sum of squares

sumSq :: Int -> Int

sumSq m = sumSq’ 1 m

where sumSq’ i1 i2

= if i1 > i2 then 0

else square i1 + (sumSq’ (i1 + 1) i2)

VARMO VENE 6

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Initial algebras

• Let C be a category and F : C → C be a functor. An F-algebra is

an object X in C together with a map ϕ : F X → X in C. An

F-algebra map (X, ϕ) → (Y, ψ) is a map f : X → Y such that the

square

FX

F f

ϕ
X

f

FY
ψ

Y

commutes. An initial F-algebra is an initial object in the

category F-alg of F-algebras, i.e., an F-algebra with a unique

map from it to any F-algebra.

VARMO VENE 7

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Initial algebras

• Syntax:

inF : F(µF) → µF

(X, ϕ) ∈ F-alg

foldF,X ϕ : µF → X

• Evaluation:
(X, ϕ) ∈ F-alg

foldF,X ϕ ◦ inF = ϕ ◦ FfoldF,X ϕ

• Extensionality:

foldF,F(µF)inF = idµF

f : (X, ϕ) → (Y, ψ) ∈ F-alg

f ◦ foldF,X ϕ = foldF,Yψ

VARMO VENE 8

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: pre-draft

• Type:

Θ : ∀X.(FX → X) → (C → X)

buildF,CΘ : C → µF

• Definition:
Θ : ∀X.(FX → X) → (C → X)

buildF,CΘ = ΘinF

• Shortcut deforestation:

Θ : ∀X.(FX → X) → (C → X) ϕ : FA → A

foldF,X ϕ ◦ buildF,CΘ = Θϕ

VARMO VENE 9

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 1st attempt

• Prop. Let C be a category. If C has an initial object 0, then the

limit of the identity functor Id : C → C is 0. Conversely if the

identity functor has a limit, then this is the initial object of C.

• Cor. A functor F : C → C has an initial algebra (µF, inF) iff

(µF, inF) is a limit of the identity functor Id : F-alg → F-alg.

(C, ϕ)

build
ϕ
F (Θ)

ΘXψ ΘYψ′

(µF, inF)
foldF,Xψ foldF,Y ψ′

(X, ψ)
f

(Y, ψ′)

VARMO VENE 10

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

• Let C be a category and F : C → C be a functor.

• Let UF : F-alg → C be a forgetful functor.

• A UF-cone is an object C in C and, for any F-algebra (X, ϕ), a

map ΘX ϕ : C → X in C, such that for any F-algebra map

f : (X, ϕ) → (Y, ψ)

f ◦ ΘX ϕ = ΘYψ

• A UF-cone map h : (C, Θ) → (D, Ξ) is a map h : C → D in C such

that, for any F-algebra (X, ϕ)

ΞX ϕ ◦ h = ΘX ϕ

• A UF-limit is a final object in the category of UF-cones.

VARMO VENE 11

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

• Syntax:

(X, ϕ) ∈ F-alg

fold
∗
F,X ϕ : µ∗F → X

(C, Θ) ∈ UF-cone

build
∗
F,CΘ : C → µ∗F

C

build
∗
F,CΘ

ΘX ϕ ΘYψ

µ∗F
fold

∗
F,X ϕ fold

∗
F,Y ψ

(X, ϕ)
f

(Y, ψ)

VARMO VENE 12

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

• Laws:

f : (X, ϕ) → (Y, ψ) ∈ F-alg

f ◦ fold
∗
F,X ϕ = fold

∗
F,Yψ

(C, Θ) ∈ UF-cone (X, ϕ) ∈ F-alg

fold
∗
F,X ϕ ◦ build

∗
F,CΘ = ΘX ϕ

idµ∗F = build
∗
F,µFfold

∗
F

h : (C, Θ) → (D, Ξ) ∈ UF-cone

build
∗
F,CΘ = build

∗
F,DΞ ◦ h

C

build
∗
F,CΘ

ΘX ϕ ΘYψ

µ∗F
fold

∗
F,X ϕ fold

∗
F,Y ψ

(X, ϕ)
f

(Y, ψ)

VARMO VENE 13

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

• Prop. Let C be a category and F : C → C be a functor. If there is

an initial F-algebra (µF, inF), then (µF, foldF) is an UF-limit.

• For any UF-cone (C, Θ), define

buildF,CΘ =df ΘµF inF : C → µF

C

buildF,CΘ
ΘµF inF ΘX ϕ

µF

foldF,µF inF foldF,X ϕ

(µF, inF)
f

(X, ϕ)

VARMO VENE 14

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

• Prop. Let C be a category and F : C → C be a functor. If there is a

UF-limit (µ∗F, fold∗F), then µ∗F is a carrier of an initial F-algebra.

• For any F-algebra (X, ϕ), define

infold
∗
F,X ϕ =df ϕ ◦ F fold

∗
F,X ϕ : F µ∗F → X

Fµ∗F

F fold
∗
F,X ϕ

infold
∗
F,X ϕ

F fold
∗
F,Y ψ

infold
∗
F,Y ψ

FX
ϕ

F f
FY

ψ

(X, ϕ)
f

(Y, ψ)

VARMO VENE 15

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

• Prop. Let C be a category and F : C → C be a functor. If there is a

UF-limit (µ∗F, fold∗F), then µ∗F is a carrier of an initial F-algebra.

• Define

in
∗
F =df build

∗

F,F(µ∗F)infold
∗
F : F µ∗F → µ∗F

Fµ∗F
in

∗
F

Ffold
∗
F,X ϕ

µ∗F

fold
∗
F,X ϕ

FX
ϕ

X

VARMO VENE 16

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

• Prop. Let C be a category and F : C → C be a functor. If there is a

UF-limit (µ∗F, fold∗F), then µ∗F is a carrier of an initial F-algebra.

• Define

in
∗
F =df build

∗

F,F(µ∗F)infold
∗
F : F µ∗F → µ∗F

µ∗F

fold
∗

F,µ∗F in
∗
F

fold
∗

F,µ∗F in
∗
F fold

∗
F,X ϕ

µ∗F

fold
∗

F,µ∗F in
∗
F fold

∗
F,X ϕ

(µ∗F, in∗F)
fold

∗
F,X ϕ

(X, ϕ)

VARMO VENE 17

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

From UF-cones to strong dinaturals

• Let H, K : Cop × C → D be functors. A dinatural transformation

Θ : H → K is a family of maps ΘX : H(X, X) → K(X, X) for all

objects X in C such that, for every map f : X → Y in C, the

following hexagon commutes:

H(X, X)
ΘX

K(X, X)
K(X, f)

H(Y, X)

H(f ,X)

H(Y, f)

K(X, Y)

H(Y, Y)
ΘY

K(Y, Y)
K(f ,Y)

VARMO VENE 18

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

From UF-cones to strong dinaturals

In our case:

• C is locally small category and D = Set

• H = Hom(F −,−) : Cop × C → Set for some functor F : C → C

• K = Hom(C,−) : C → Set for some object C in C.

• Dinaturality says: for any maps f : X → Y, ξ : F Y → X,

ϕ : F X → X, ψ : F Y → Y

F X

F f

ϕ
X

f

F Y

ξ

ψ
Y

=⇒

C
ΘX ϕ ΘYψ

X
f

Y

• Not quite right !?

VARMO VENE 19

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

From UF-cones to strong dinaturals

• Let H, K : Cop × C → D be functors. A strongly dinatural

transformation Θ : H → K is a family of maps

ΘX : H(X, X) → K(X, X) for all objects X in C such that, for every

map f : X → Y, object W in D and maps p0 : W → H(X, X),

p1 : W → H(Y, Y), if the square in the following diagram

commutes, then so does the hexagon:

H(X, X)
H(X, f)

ΘX
K(X, X)

K(X, f)

W

p0

p1

H(X, Y) ⇒ K(X, Y)

H(Y, Y)
H(f ,Y)

ΘY
K(Y, Y)

K(f ,Y)

VARMO VENE 20

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

From UF-cones to strong dinaturals

• C is locally small category and D = Set

• H = Hom(F −,−) : Cop × C → Set for some functor F : C → C

• K = Hom(C,−) : C → Set for some object C in C.

• Strong dinaturality says: for any maps f : X → Y, ϕ : F X → X,

ψ : F Y → Y

F X

F f

ϕ
X

f

F Y
ψ

Y

=⇒

C
ΘX ϕ ΘYψ

X
f

Y

VARMO VENE 21

BUILD, AUGMENT AND DESTROY. UNIVERSALLY.

Conclusions and future work

• Done: Alternative semantics of inductive types as limits of

forgetful functor.

• Also: Derivation and generalization of augment combinator.

• Dualizes for coinductive types.

• To do: Parametricity in terms of strong dinaturals for languages

supporting interleaved inductive and coinductive types

VARMO VENE 22

