Build, Augment and Destroy. Universally

Varmo VENE (Uni. Tartu, Estonia)

Joint work with
Neil GHANI (Uni. Leicester, UK)

Tarmo UUSTALU (Inst. of Cybernetics, Tallinn, Estonia)

Teooriapaevad, Veskisilla, 1 Oct 2004

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Motivation

e The usual in/fold paradigm of programming with inductive
types is very elegant and useful since it is directly based on the
initial algebra semantics,

a universal construction, syntax and equational laws for
programming and reasoning follow directly.

e But in functional programming, in shortcut deforestation, one
also uses build and fold/build fusion, the semantics has been
unclear.

e Related is the question about the adequacy of the “impredicative
encoding” of inductive types (Freyd, Wadler, Hasegawa. . .)

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Background

e Gill, Launchbury, Peyton Jones (1993) -
— bui | d to capture uniform production of lists.
— fol dr /bui | d fusion to eliminate intermediate lists.

-~ correctness “proved” informally by reference to "theorems for
free”

e Gill (1996) — augnent for lists
e Takano, Meijer (1995) — bui | d for arbitrary inductive types

e Johann (2002, 2003) — correctness proof via parametricity of
contextual equivalence

VARMO VENE

BUILD,

AUGMENT AND DESTROY. UNIVERSALLY.

Shortcut deforesation

Program transformation for automatic removal of intermediate
data structures

Uses f ol dr as standard list processing function

foldr :: (a->b ->Db) ->b ->Ja] ->Db
foldr f b [] = b
foldr f b (x:xs) =f x (foldr f b xs)

List producers are defined using bui | d

build :: (forall x . (a->x ->Xx) ->x ->x) ->[a]
build theta = theta (:) []

f ol dr /bui | d fusion
foldr f b (build theta) ==> theta f b

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Shortcut deforesation: example

e Modular (but inefficient) sum of squares:

sunsq :: Int -> Int
sunSg m = sum (nap square (upto 1 m)

e Definitions of sum map and upt o

sum= foldr (+) O
map f xs = build (\ ¢c n ->
foldr (\ X ys ->f x ‘c' ys) n xs)
upto 11 12 = build (\ c n->upto” c nili?2
upto’ c n il i2
=if 11 >1i12 then n
else i1l ‘c' upto cn (il + 1) 12

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Shortcut deforesation: example

e Transformation

sum (map square (upto 1 m)
==> foldr (+) O (build (\ ¢c n ->
foldr (\ X ys -> square x ‘c' ys) n (upto 1 m))
==> foldr (\ x ys -> square x + ys) O (upto 1 m
==> foldr (\ x ys -> square x +ys) O
(build (\ ¢ n->upto” cn1ln
==> upto’ (\ X ys -> square x +ys) 01 m
e Efficient sum of squares
sunsq :: Int -> Int
sunSg m = sunS5qg’” 1 m
where sunSg’ 11 12
=if i1 >i1i2then O
el se square 11 + (sunbg” (i1l + 1) 12)

VARMO VENE 6

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Initial algebras

e Let C be a category and F : C — C be a functor. An F-algebra is
an object X in C together withamap ¢ : F X — X in C. An
F-algebra map (X,) — (Y,9) isamap f : X — Y such that the
square

FX —~ x

1]

FY?Y

commutes. An initial F-algebra is an initial object in the
category F-alg of F-algebras, i.e., an F-algebra with a unique
map from it to any F-algebra.

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Initial algebras

o Syntax:
(X, 9) € F-alg
ing : F(],[F) —],tF fO|d1:,Xg0 :]/lF — X

e Evaluation:
(X,) € F-alg

fOldF,X§0 oinp = @ o Ffoldp,ng

e Extensionality:

f:(X,9) — (Y,y) € F-alg
fOldF,F(‘uF)inF = id,F f o foldr,x¢ = foldp y¢p

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: pre-draft

e Type:
O : VX.(FX — X) — (C — X)
buildrp c® : C — uF

e Definition:
O : VX.(FX — X) — (C — X)

buildplc@ = @inp

e Shortcut deforestation:

®: VX.(FX—X)—>(C—=X) ¢ : FA> A
f0|d1:,Xg0 O buildplc@ = @gD

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 1st attempt

e Prop. Let C be a category. If C has an initial object 0, then the
limit of the identity functor Id : C — C is 0. Conversely if the
identity functor has a limit, then this is the initial object of C.

e Cor. A functor F:C — C has an initial algebra (uF,inf) iff
(uF,inp) is a limit of the identity functor Id : F-alg — F-alg.

(C,_ 7y

build? (@) -

;
(]/lP, inF)
y w
f /
(X, 9) (Y,)

VARMO VENE

10

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

e Let C be a category and F : C — C be a functor.
o Let Ur : F-alg — C be a forgetful functor.

e A Ur-cone is an object C in C and, for any F-algebra (X, ¢), a
map Ox¢ : C — X in C, such that for any F-algebra map

[(X 9) = (Y, 9)
f @) @XQO = @YIP

e AlUr-conemaph: (C,0) — (D,&)isamap h:C — D in C such
that, for any F-algebra (X, ¢)

EXgOOh = @X§0

e A Ur-limit is a final object in the category of Ur-cones.

VARMO VENE

11

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

e Syntax:
(X, @) € F-alg (C,®) € Ur-cone

foldp ¢ : u*F — X buildy @ : C — p*F

VARMO VENE

12

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

e Laws:
f:(X,9) — (Y,¢) € F-alg (C,0) € Up-cone (X, @) € F-alg
f o foldf ¢ = fold} y foldy ¢ o build} -© = Ox¢
h:(C,0)— (D,E) € Up-cone
idyr = buildf , pfold} build} -® = build} pE o

VARMO VENE

13

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

e Prop. Let C be a category and F : C — C be a functor. If there is
an initial F-algebra (uF,ing), then (uF, foldp) is an Up-limit.

e For any Ur-cone (C,0), define

buildplc@ —df @yp Inp C—>‘MF

C
buildp,c@l Ox®
ukF
foldplp,pinp \foldF,xqv
“ f

(]/lF, inp)

VARMO VENE

14

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

e Prop. Let C be a category and F : C — C be a functor. If there is a
Urp-limit (u*F,foldr), then u*F is a carrier of an initial F-algebra.

e For any F-algebra (X, ¢), define
infoldp y ¢ =g @oFfoldpy ¢ : FuF—X

Fu*F

infoldy y ¢ infoldyy ¢

N\

FX T FY

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

e Prop. Let C be a category and F : C — C be a functor. If there is a
Urp-limit (u*F,foldr), then u*F is a carrier of an initial F-algebra.

e Define

ing =qr build} p.pjinfold; i FuF — p'F

inp
Fu*F u*F
FfOIdEk-",Xq)l \Lfoldjélxq)
FX ! X

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Building build: 2nd attempt

e Prop. Let C be a category and F : C — C be a functor. If there is a
Urp-limit (u*F,foldr), then u*F is a carrier of an initial F-algebra.

e Define

ing =qr build} p.pjinfold; i FuF — p'F

W'k
fOId}k: *Fln}k: . .
: fOIdF,u*F'nF\L
W'k
foldp xping
RO e foldr x ¢
(W*F,ing)

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

From Ur-cones to strong dinaturals

e Let H K:C°° x C — D be functors. A dinatural transformation
©: H — K is a family of maps Oy : H(X, X) — K(X, X) for all
objects X in C such that, for every map f : X — Y in C, the
following hexagon commutes:

®
(r) KX — KX X) K(X,f)
g £
H(Y, X) K(X,Y)

O™ e
H(Y,Y) —— K(Y,Y)

Oy

VARMO VENE

18

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

From Ur-cones to strong dinaturals

In our case:
e C is locally small category and D = Set
¢ H=Hom(F —,—) :C°® x C — Set for some functor F:C — C
¢ K=Hom(C,—):C — Set for some object C in C.

e Dinaturality says: foranymaps f : X —= Y, :FY — X,
p: F X=X, ¢:FY—=Y

FX " >X C
IR
FY?Y X d Y

e Not quite right !?

VARMO VENE

19

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

From Ur-cones to strong dinaturals

e Let H,K:C° x C — D be functors. A strongly dinatural
transformation ® : H — K is a family of maps
Ox : H(X, X) — K(X, X) for all objects X in C such that, for every
map f : X — Y, object W in D and maps py: W — H(X, X),
p1: W — H(Y,Y), if the square in the following diagram
commutes, then so does the hexagon:

®
w0 1K) s i KX X) o)
e N g
W H(X,Y) = K(X,Y)
2 i o
H(Y,Y) o K(Y,Y)

VARMO VENE

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

From Ur-cones to strong dinaturals

e C is locally small category and D = Set
¢ H=Hom(F —,—) :C° x C — Set for some functor F: C — C
¢ K=Hom(C,—) :C — Set for some object C in C.

e Strong dinaturality says: foranymaps f: X — Y, ¢ : F X — X,

l/):FY%Y
FX =X C
IR
FY =Y X / %

4

VARMO VENE

21

BuiLD, AUGMENT AND DESTROY. UNIVERSALLY.

Conclusions and future work

e Done: Alternative semantics of inductive types as limits of
forgetful functor.

e Also: Derivation and generalization of augnent combinator.
e Dualizes for coinductive types.

e To do: Parametricity in terms of strong dinaturals for languages
supporting interleaved inductive and coinductive types

VARMO VENE

22

