Build, Augment and Destroy. Universally

Varmo Vene (Uni. Tartu, Estonia)

Joint work with
Neil Ghani (Uni. Leicester, UK)
Tarmo Uustalu (Inst. of Cybernetics, Tallinn, Estonia)

Teooriapäevad, Veskisilla, 1 Oct 2004

Motivation

- The usual in/fold paradigm of programming with inductive types is very elegant and useful since it is directly based on the initial algebra semantics, a universal construction, syntax and equational laws for programming and reasoning follow directly.
- But in functional programming, in shortcut deforestation, one also uses build and fold/build fusion, the semantics has been unclear.
- Related is the question about the adequacy of the "impredicative encoding" of inductive types (Freyd, Wadler, Hasegawa. ..)

Background

- Gill, Launchbury, Peyton Jones (1993) -
- build to capture uniform production of lists.
- foldr/build fusion to eliminate intermediate lists.
- correctness "proved" informally by reference to "theorems for free"
- Gill (1996) - augment for lists
- Takano, Meijer (1995) - build for arbitrary inductive types
- Johann $(2002,2003)$ - correctness proof via parametricity of contextual equivalence

Shortcut deforesation

- Program transformation for automatic removal of intermediate data structures
- Uses foldr as standard list processing function

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
```

- List producers are defined using build
build : : (forall x . (a -> x -> x) -> x -> x) -> [a] build theta = theta (:) []
- foldr/build fusion
foldr f b (build theta) ==> theta f b

Shortcut deforesation: example

- Modular (but inefficient) sum of squares:

```
sumSq :: Int -> Int
sumSq m = sum (map square (upto 1 m))
```

- Definitions of sum, map and upto

```
sum = foldr (+) 0
map f xs = build (\ c n ->
    foldr (\ x ys -> f x 'c' ys) n xs)
upto i1 i2 = build (\ c n -> upto' c n il i2)
upto' c n il i2
    = if il > i2 then n
        else i1 'c` upto' c n (il + 1) i2
```


Shortcut deforesation: example

- Transformation

```
sum (map square (upto 1 m))
==> foldr (+) 0 (build (\ c n ->
    foldr (\ x ys -> square x `c` ys) n (upto 1 m)))
==> foldr (\ x ys -> square x + ys) 0 (upto 1 m)
==> foldr (\ x ys -> square x + ys) 0
                                    (build (\ c n -> upto' c n 1 m)
==> upto' (\ x ys -> square x + ys) 0 1 m
```

- Efficient sum of squares

```
sumSq :: Int -> Int
sumSq m = sumSq' 1 m
    where sumSq' i1 i2
    = if il > i2 then 0
    else square i1 + (sumSq' (i1 + 1) i2)
```


Initial algebras

- Let \mathcal{C} be a category and $F: \mathcal{C} \rightarrow \mathcal{C}$ be a functor. An F-algebra is an object X in \mathcal{C} together with a map $\varphi: F X \rightarrow X$ in \mathcal{C}. An F-algebra map $(X, \varphi) \rightarrow(Y, \psi)$ is a map $f: X \rightarrow Y$ such that the square

commutes. An initial F-algebra is an initial object in the category F-alg of F-algebras, i.e., an F-algebra with a unique map from it to any F-algebra.

Initial algebras

- Syntax:

$$
\operatorname{in}_{F}: F(\mu F) \rightarrow \mu F \quad \frac{(X, \varphi) \in F \text {-alg }}{\operatorname{fold}_{F, X} \varphi: \mu F \rightarrow X}
$$

- Evaluation:

$$
\frac{(X, \varphi) \in F-\mathbf{a l g}}{\operatorname{fold}_{F, X} \varphi \circ \operatorname{in}_{F}=\varphi \circ \mathrm{Ffold}_{F, X} \varphi}
$$

- Extensionality:

$$
\operatorname{fold}_{F, F(\mu F)} \operatorname{in}_{F}=\operatorname{id}_{\mu F} \quad \frac{f:(X, \varphi) \rightarrow(Y, \psi) \in F-\mathbf{a l g}}{f \circ \operatorname{fold}_{F, X} \varphi=\operatorname{fold}_{F, Y} \psi}
$$

Building build: pre-draft

- Type:

$$
\frac{\Theta: \forall X .(F X \rightarrow X) \rightarrow(C \rightarrow X)}{\operatorname{build}_{F, C} \Theta: C \rightarrow \mu F}
$$

- Definition:

$$
\frac{\Theta: \forall X .(F X \rightarrow X) \rightarrow(C \rightarrow X)}{\operatorname{build}_{F, C} \Theta=\Theta \operatorname{in}_{F}}
$$

- Shortcut deforestation:

$$
\frac{\Theta: \forall X .(F X \rightarrow X) \rightarrow(C \rightarrow X) \quad \varphi: F A \rightarrow A}{\mathrm{fold}_{F, X} \varphi \circ \operatorname{build}_{F, C} \Theta=\Theta \varphi}
$$

Building build: 1st attempt

- Prop. Let \mathcal{C} be a category. If \mathcal{C} has an initial object 0 , then the limit of the identity functor Id : $\mathcal{C} \rightarrow \mathcal{C}$ is 0 . Conversely if the identity functor has a limit, then this is the initial object of \mathcal{C}.
- Cor. A functor $F: \mathcal{C} \rightarrow \mathcal{C}$ has an initial algebra $\left(\mu F, \mathrm{in}_{F}\right)$ iff $\left(\mu F, \mathrm{in}_{F}\right)$ is a limit of the identity functor Id : F-alg $\rightarrow F$-alg.

Building build: 2nd attempt

- Let C be a category and $F: \mathcal{C} \rightarrow \mathcal{C}$ be a functor.
- Let $U_{F}: F$-alg $\rightarrow \mathcal{C}$ be a forgetful functor.
- A U_{F}-cone is an object C in \mathcal{C} and, for any F-algebra (X, φ), a map $\Theta_{X} \varphi: C \rightarrow X$ in \mathcal{C}, such that for any F-algebra map $f:(X, \varphi) \rightarrow(Y, \psi)$

$$
f \circ \Theta_{X} \varphi=\Theta_{Y} \psi
$$

- A U_{F}-cone map $h:(C, \Theta) \rightarrow(D, \Xi)$ is a map $h: C \rightarrow D$ in \mathcal{C} such that, for any F-algebra (X, φ)

$$
\Xi_{X} \varphi \circ h=\Theta_{X} \varphi
$$

- A U_{F}-limit is a final object in the category of U_{F}-cones.

Building build: 2nd attempt

- Syntax:

$$
\frac{(X, \varphi) \in F \text {-alg }}{\text { fold }_{F, X}^{*} \varphi: \mu^{*} F \rightarrow X} \quad \frac{(C, \Theta) \in U_{F} \text {-cone }}{\text { build }_{F, C}^{*} \Theta: C \rightarrow \mu^{*} F}
$$

Building build: 2nd attempt

- Laws:

$$
\frac{f:(X, \varphi) \rightarrow(Y, \psi) \in F-\mathbf{a l g}}{f \circ \mathrm{fold}_{F, X}^{*} \varphi=\mathrm{fold}_{F, Y}^{*} \psi}
$$

$$
\frac{(C, \Theta) \in U_{F} \text {-cone } \quad(X, \varphi) \in F \text {-alg }}{\text { fold }_{F, X}^{*} \varphi \circ \text { build }_{F, C}^{*} \Theta=\Theta_{X} \varphi}
$$

$$
\operatorname{id}_{\mu^{*} F}=\operatorname{build}_{F, \mu F}^{*} \text { fold }_{F}^{*} \quad \frac{h:(C, \Theta) \rightarrow(D, \Xi) \in U_{F} \text {-cone }}{\text { build }_{F, C}^{*} \Theta=\operatorname{build}_{F, D}^{*} \Xi \circ h}
$$

Building build: 2nd attempt

- Prop. Let C be a category and $F: \mathcal{C} \rightarrow \mathcal{C}$ be a functor. If there is an initial F-algebra $\left(\mu F\right.$, in $\left._{F}\right)$, then $\left(\mu F\right.$, fold $\left._{F}\right)$ is an U_{F}-limit.
- For any U_{F}-cone (C, Θ), define

$$
\operatorname{build}_{F, C} \Theta \quad={ }_{\mathrm{df}} \quad \Theta_{\mu \mathrm{F}} \text { in }_{F} \quad: \quad C \rightarrow \mu F
$$

Building build: 2nd attempt

- Prop. Let C be a category and $F: \mathcal{C} \rightarrow \mathcal{C}$ be a functor. If there is a U_{F}-limit $\left(\mu^{*} F\right.$, fold $\left.{ }_{F}^{*}\right)$, then $\mu^{*} F$ is a carrier of an initial F-algebra.
- For any F-algebra (X, φ), define

$$
\text { infold }_{F, X}^{*} \varphi={ }_{\mathrm{df}} \quad \varphi \circ F \text { fold }_{F, X}^{*} \varphi \quad: \quad F \mu^{*} F \rightarrow X
$$

Building build: 2nd attempt

- Prop. Let C be a category and $F: \mathcal{C} \rightarrow \mathcal{C}$ be a functor. If there is a U_{F}-limit $\left(\mu^{*} F\right.$, fold $\left.{ }_{F}^{*}\right)$, then $\mu^{*} F$ is a carrier of an initial F-algebra.
- Define

$$
\mathrm{in}_{F}^{*}==_{\mathrm{df}} \quad \text { build }_{F, F\left(\mu^{*} F\right)}^{*} \text { infold }_{F}^{*} \quad: \quad F \mu^{*} F \rightarrow \mu^{*} F
$$

Building build: 2nd attempt

- Prop. Let C be a category and $F: \mathcal{C} \rightarrow \mathcal{C}$ be a functor. If there is a U_{F}-limit $\left(\mu^{*} F\right.$, fold $\left.{ }_{F}^{*}\right)$, then $\mu^{*} F$ is a carrier of an initial F-algebra.
- Define

$$
\mathrm{in}_{F}^{*}==_{\mathrm{df}} \quad \text { build }_{F, F\left(\mu^{*} F\right)}^{*} \text { infold }_{F}^{*} \quad: \quad F \mu^{*} F \rightarrow \mu^{*} F
$$

From U_{F}-cones to strong dinaturals

- Let $H, K: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{D}$ be functors. A dinatural transformation $\Theta: H \rightarrow K$ is a family of maps $\Theta_{X}: H(X, X) \rightarrow K(X, X)$ for all objects X in \mathcal{C} such that, for every map $f: X \rightarrow Y$ in \mathcal{C}, the following hexagon commutes:

From U_{F}-cones to strong dinaturals

In our case:

- \mathcal{C} is locally small category and $\mathcal{D}=$ Set
- $H=\operatorname{Hom}(F-,-): \mathcal{C}^{\text {op }} \times \mathcal{C} \rightarrow$ Set for some functor $F: \mathcal{C} \rightarrow \mathcal{C}$
- $K=\operatorname{Hom}(C,-): \mathcal{C} \rightarrow$ Set for some object C in \mathcal{C}.
- Dinaturality says: for any maps $f: X \rightarrow Y, \xi: F Y \rightarrow X$, $\varphi: F X \rightarrow X, \psi: F Y \rightarrow Y$

- Not quite right !?

From U_{F}-cones to strong dinaturals

- Let $H, K: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{D}$ be functors. A strongly dinatural transformation $\Theta: H \rightarrow K$ is a family of maps $\Theta_{X}: H(X, X) \rightarrow K(X, X)$ for all objects X in \mathcal{C} such that, for every map $f: X \rightarrow Y$, object W in \mathcal{D} and maps $p_{0}: W \rightarrow H(X, X)$, $p_{1}: W \rightarrow H(Y, Y)$, if the square in the following diagram commutes, then so does the hexagon:

From U_{F}-cones to strong dinaturals

- \mathcal{C} is locally small category and $\mathcal{D}=$ Set
- $H=\operatorname{Hom}(F-,-): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow$ Set for some functor $F: \mathcal{C} \rightarrow \mathcal{C}$
- $K=\operatorname{Hom}(C,-): \mathcal{C} \rightarrow$ Set for some object C in \mathcal{C}.
- Strong dinaturality says: for any maps $f: X \rightarrow Y, \varphi: F X \rightarrow X$, $\psi: F Y \rightarrow Y$

Conclusions and future work

- Done: Alternative semantics of inductive types as limits of forgetful functor.
- Also: Derivation and generalization of augment combinator.
- Dualizes for coinductive types.
- To do: Parametricity in terms of strong dinaturals for languages supporting interleaved inductive and coinductive types

