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a brief introduction...

• ...originally from Greece

• BS, University of Athens, Greece

• MS and PhD, Stanford University, USA

• PhD adviser: Rajeev Motwani

• Thesis title: “Algorithms for similarity search and clustering in

large data sets”, July, 2003

• in Basic Research Unit, HIIT, Finland, since August 2003
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Basic Research Unit, HIIT

• research

– Heikki Mannila

– Panayiotis Tsaparas

– Niina Haiminen, Evimaria Terzi

– external collaborators: Foto Afrati, Christos Faloutsos, Spiros

Papadimitriou, Alex Hinnenburg, . . .

• co-supervising students

– Niina Haiminen, Evimaria Terzi

• teaching courses

– data mining, approximation algorithms, computational

complexity, spectral methods for data mining
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Research paradigm in BRU

• develop novel data analysis techniques for use in other sciences

• combine basic research in computer science with applications

– look at data analysis problems arising in practice

– abstract new computational concepts from them

– analyze, develop new computational methods

– take the results into practice

⇒ theoretical work in algorithms and foundations of data analysis

can have fast impact in the application areas

⇐ the applications feed interesting novel questions to theoretical

research
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Recent projects

• sequence analysis

– biology, genetics, physics, telecommunications

• analysis of spatial data

– biology, ecology

• ordering problems

– paleontology

• clustering

• analysis of 0–1 matrices
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...rest of the talk...

Models and algorithms for network immunization

joint work with George Giakkoupis, Evimaria Terzi, and

Panayiotis Tsaparas

Genome segmentations

joint work with Niina Haiminen, Evimaria Terzi, Heikki Mannila
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Motivation

• many natural or man-made systems are organized as networks

– internet, web, social networks, protein networks, etc.

• operation is threaten by the propagation of a harmful entity

through the network

– diseases in social networks

– gossip or panic in social networks

– failures in power grids

– computer viruses on the internet

• can we restrict the spread of the virus in the network?
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Virus spread
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Virus spread
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Restrain the spread
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Restrain the spread
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Naive virus injection
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General framework

• network G = (V,E) over which the virus propagates

• virus-propagation model (can be probabilistic)

• adversary who injects copies of the virus in the network

– blind

– adaptive

⇒ immunization algorithm:

given a network, budget k, and a virus-propagation model

find k nodes to immunize so that the spread is minimized
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What is the spread?

• network G = (V,E)

• adversary plants r viruses (blindly or adaptively)

• Nr ⊆ V : set of nodes selected by adversary

• expected number of infected nodes: S(Nr, G)

• spread: Sr(G) = maxNr
S(Nr, G)

• expected spread: Ŝr(G) = ENr
[S(Nr, G)]
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Example of immunization algorithms

• immunize a random node

• immunize the node with the largest degree
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Virus-propagation models

• problem as stated above is too general

– e.g., no formal specification language for all possible

virus-propagation models

• concentrate on two specific virus-propagation models:

– independent cascade, and

– dynamic propagation,

...but similar ideas can be applied to other models, too
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Some background models on epidemics

• Susceptible-Infected-Removed (SIR)

– susceptible (healthy) nodes do not have the virus but they

can catch it if exposed to somebody who does

– infected nodes have the virus and they can pass it

– removed (or recovered) have immunity, cannot catch the

virus again and cannot pass it on

• Susceptible-Infected-Susceptible (SIS)

– susceptible nodes

– infected nodes can be healed and become susceptible again

Estonia CS theory days, 29 Oct, 2005 25



Epidemics background

• traditional studies do not take into account the network

structure

– nodes become infected or recovered with uniform probabilities

• modern studies do take into account network topology

• epidemic threshold

– β: infection rate, δ: healing rate, λ = β/δ: effective

spreading rate

– ∃λc s.t. if

– λ ≥ λc a non-zero fraction of nodes becomes infected (SIR)

– λ ≥ λc virus spreads and becomes persistent (SIS)

– λ < λc virus dies out exponentially fast (SIS)
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Epidemics background

• many studies of special cases

• power-law networks do not have (non-zero) epidemic thresholds

• studies of immunizing the highest degree nodes

• immunization in the case of unknown network topology

– immunizing the adjacent node of a random node works well

for skewed-degree networks

• . . .
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Our approach

• algorithmic approach to the immunization problem

• extensive experimentation

• virus-propagation models considered:

– independent cascade, and

– dynamic propagation
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Independent cascade

• initially the adversary plants r viruses in the network

• assume node u becomes infected for first time at time t:

– u attempts to infect all currently uninfected neighbors v

– it succeeds with probability p

– if u succeeds then v becomes infected

– otherwise u never attempts to infect v again
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Independent cascade — example

Time 1

q

w

u v
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Independent cascade
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Independent cascade
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Independent cascade
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Independent cascade

• given a sampling on network links with probability p

– S1(G) is size of largest connected component (adaptive)

– Ŝ1(G) is the average connected components size (blind)

• immunization problem:

– remove k nodes from the network in order to minimize

– size of r largest connected components, or

– average size of connected component, respectively

• both Sr(G) and Ŝr(G) are NP-hard
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Algorithm for the independent-cascade model

• greedy, i.e., immunize nodes one by one

• for the adaptive-adversary case:

– at each iteration find the node that minimizes the expected

size of the largest connected component in the resulting

network

• for the blind-adversary case:

– at each iteration find the node that minimizes the expected

size of the average connected component in the resulting

network
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Computing the expectations

• sample many graphs over all the 2|E| possible graphs

– in each sample graph (u, v) exists with probability p

⇒ in each sampled graph

for each node u

find the size of the largest/average connected component

in the graph resulting from removing (immunizing) u

select the node that minimizes the expectation (largest/average)
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Dynamic-propagation

• a dynamic birth-death process that evolves over time

• virus propagates from node u to neighbor node v with

probability β

• at each point in time, a node u that is infected heals with

probability δ
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Epidemic-threshold property

• Theorem. Consider network G with adjacency matrix M ,

propagation probability β, and healing probability δ.

If β/δ < 1/λ1(M) the expected time until the virus dies out is

logarithmic in the number of nodes in the network, against an

adaptive adversary
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Epidemic threshold (cont.)

• what if β/δ large?

• notice that the virus eventually will die out

• dynamical model hard to analyze because of non linearities

• recent work by Ganesh et al. 2005 shows that

if β/δ > 1/η(G) (isoparametric constant of the graph) then the

expected time until the virus dies out is exponential with the

size of the network
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Multiple-copies model

• each node can have multiple copies of a virus

• infection probability refers to receiving one more copy

• healing probability refers to removing one copy

• more pessimistic than the single-copy model

• easier to analyze
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Multiple-copies model

• at time t, node i has vt
i copies

• v
t = [vt

1, . . . , v
t
n] vector of nodes’ copies

• v̂
t expected value of v

t

• then

v̂
t+1 = ∆v̂

t, where ∆ = βM + diag(1− δ, . . . , 1− δ)

• Theorem. In the multiple-copies model the expected time until

the virus dies out is logarithmic if β/δ < 1/λ1(M) and it is

unbounded if β/δ > 1/λ1(M)
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Immunization problem for the dynamic model

• given network G and effective infection rate β/δ, immunize the

minimum number of nodes in G, such that β/δ < 1/λ1(M
′),

where M ′ is the adjacency matrix of the immunized network

• we would like to use a greedy approach

• the problem becomes finding the node to immunize so that the

eigenvalue of the adjacency matrix drops as much as possible
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EIG algorithm for dynamic propagation

• B ←M

• while β/δ > 1/λ1(B)

– compute w1, the eigenvector of B that corresponds to λ1(B)

– find node u with the maximum value in w1

– Remove u from the graph and form new matrix B ′

– B ← B′
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Intuition behind the EIG algorithm

• suppose that “susceptibility” of node i is captured by wi

• probability of virus propagation between i and j: pij = wiwj

• healing probability of node i is 1− w2
i

• system matrix ∆ = ww
T

• then λ1(∆) = ||w||
2 and corresponding eigenvector w (norm.)

• consider ∆′ after immunizing node i

(zero-ing the i-th row and column of ∆)

• now λ1(∆
′) = ||w||2 − w2

i
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Intuition behind the EIG algorithm

• the principal eigenvalue gives an indication of the connectivity

of the network

• large eigenvalue corresponds to a densely connected network

• the nodes with the maximum value in the first eigenvector are

the ones that are most tightly interconnected

• removing these nodes reduces the graph connectivity

• in general EIG selects nodes with high degree, but not always

(more global view)
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Experimental setup – algorithms

• compare the performance of the algorithms against other

strategies

– MaxDegree

– MaxDegreeIt

– Random
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Experimental setup – datasets

• synthetic datasets:

– random graphs (Erdős-Rényi)

– scale-free graphs (Barabási and Albert)

– small-world graph (Watts, Watts and Strogatz)

• real datasets:

– co-authorship graphs (representing social networks)

– autonomous systems (internet topology)

– power-grid (networks of electricity transfer)
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Scale-free graphs (Barabási and Albert)

• preferential attachment

• nodes join the network sequentially

• each new node comes with m edges

• it connects its m edges to existing nodes, which are selected

with probability proportional to their degrees

• simulates the rich gets richer effect

• results in power-law graphs with exponent 3
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Small-world graphs

• Networks with

high clustering coefficient and

small average path length
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Small-world graphs – Watts model

• generated using a parameter α

• intuitively α controls the probability that two nodes will be

connected given the number of their common neighbors
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Small-world graphs – Watts-Strogatz model

• the generation process is governed by parameters q

• initially all nodes are on a ring lattice.

• each node has degree k

• each node is rewired to another random node with probability q
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Independent cascade

synthetic dataset – scale-free graphs
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Independent cascade

synthetic dataset – small-world graphs
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Independent cascade

synthetic datasets – small-world graphs
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Independent cascade

real datasets
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Dynamic propagation

synthetic datasets
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Dynamic propagation

real datasets
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Conclusions

• network immunization problem under different virus propagation

models

• greedy algorithms work well in practice

• applications in epidemiology and security of computer networks

• many open problems

– can we do better than the greedy?

– which node to remove in order to obtain the largest drop in

the eigenvalue?
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...complete change of topic...

Genome segmentations

joint work with Niina Haiminen, Evimaria Terzi, Heikki Mannila

Estonia CS theory days, 29 Oct, 2005 62



(k,h)-segmentation

• [Gionis and Mannila 03]

• given sequence S = a1, a2, . . . , an

• we want to find k segments

• but only h < k different segment types are allowed

• each of the k segments should be assigned to one of the h types

• find the best segmentation into k segments, the h types, and

the assignment of each segment to one type
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(k,h)-segmentation: problem definition

• assume piecewise constant representation, and L2
2

• given sequence S = a1, a2, . . . , an

• we want to find

– partition of S into k segments S1, . . . , Sk,

– h levels l1, . . . , lh

– assignment of segment j to level lj ∈ {l1, . . . , lh}

in order to minimize the total error

R[n, k, h] =
k∑

j=1

ej∑

i=bj

(ai − lj)
2
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Example
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Example: k = 3 and h = 3
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Example: k = 3 and h = 2
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Some facts about the (k, h)-segmentation problem

• NP-Complete problem for multidimensional data (d > 1), w.r.t.

L1 and L2 (contrast with k-segmentation, which is polynomial)

• generalizes k-segmentation and clustering

– k-segmentation: h = k

– clustering: k = n

• simple approximation algorithms that combine the above two

subproblems

– d = 1: 3-approximation for L1, 5-approximation for L2
2

– d > 1: (3 + ε)-approx. for L1, (1 + 4α
2)-approx. for L2

2,

where α is the best approximation factor for k-means
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ClusterSegments algorithm

• solve k-segmentation problem and obtain segments S1, . . . , Sk

• consider the representative cj for each segment Sj

(mean, median, etc.)

• map segment Sj to a weighted point with value cj and weight

wj = |Sj|

• cluster those k weighted points to h centers L = {l1, . . . , lh}

• assign each segment to its closer center in L

• running time is O(n2k) (from dynamic programming)
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ClusterSegments example, k = 3, h = 2
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ClusterSegments example, k = 3, h = 2
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ClusterSegments example, k = 3, h = 2
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ClusterSegments example, k = 3, h = 2
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ClusterSegments example, k = 3, h = 2
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Iterative algorithm

• if we know the k best segments, we can find the h best levels

• if we know the h best levels, we can find the k best segments

• start from an initial solution,

e.g., the one produced by the previous algorithm

• iterate:

– keep segment boundaries fixed, find levels

– keep levels fixed, find boundaries

• EM-style, fast convergence, good results
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DNA segmentation

• segmentation: a powerful concept for examining the large-scale

organization of DNA

• many examples of segments in DNA

– (telomere, main-sequence, centromere)

– (gene-rich, junk DNA)*

– (regulatory region, gene, regulatory region, junk DNA)*

– (microbial insert | viral insert | ancient mammalian)*

• goal is to understand the complexity of the genome organization

based on segments and recurrent sources

Estonia CS theory days, 29 Oct, 2005 76



DNA segmentation

• existing approaches with top-down segmentation and greedy

identification of similar segments [Bernaola-Galván et al. 96,

Bernaola-Galván et al. 00, Li 01, Azad et al. 02]

• here we describe some of our own experiments with

(k, h)-segmentation [Haiminen et al. 05]
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Distinguishing genomes of different species

• create many “semi-synthetic” datasets HiSj by concatenating

– Hi: the i-th chromosome of human with

– Sj: the j-th chromosome of another species S

• apply (k, h)-segmentation and compare with the ground truth

segmentation

• let L = {l1, . . . , lh} be the discovered sources in the

concatenated sequence, and LH and LS be the distribution of

lengths of sources of L in chromosomes H and S, resp.

• compare the variational distance between the two distributions

– 0: identical distributions, 1: completely distinct distributions

Estonia CS theory days, 29 Oct, 2005 78



Genomes of different species — sample segmentations
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Genomes of different species — sample segmentations
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Genomes of different species — sample segmentations
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Genomes of different species — variational distances
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Genomes of different species — variational distances
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Distinguishing coding from non-coding regions

• Rickettsia bacterium region that includes 13 genes and

non-coding in-between region

• 10 bp non-overlapping windows

• in each window features that capture the existence of codons
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Distinguishing coding from non-coding regions
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DNA segmentations — conclusions

• segmentation is promising tool for analyzing genomic sequences

• fascinating problem of understanding the structure of DNA

Estonia CS theory days, 29 Oct, 2005 86



Thank you!

• for your attention

• Helger Lipmaa and Tarmo Uustalu for the invitation

• hope to learn more about CS research and theory in Estonia...

• ...hope to enjoy the weekend, too!
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