Dynamic programming using histomorphisms

Jevgeni Kabanov
Viinistu, 2005
CATAMORPHISM (FOLD)

• Structural recursion combinator

• Generic foldr (Haskell)

• Eats (folds) trees from bottom-up, producing combined result

• Similar to Visitor pattern in OOP, but doesn’t update structures
Sum fold animation

Let’s count this tree sum...
Sum fold animation

And the result is $16 = 1 + 5 + 3 + 7$
Histomorphism

- Introduced by Varmo & Tarmo in 1999
- Course-of-value structural recursion combinator
- Inspired by dynamic programming technique
- Moves bottom-up annotating the tree with results
- Allows to reuse sub(-sub)* node results
- Finally collapses the tree producing the end result
Funny sum histo animation

Let’s count this tree (funny) sum...
Funny sum histo animation
Funny sum histo animation
Funny sum histo animation

```
1 -- 5
\|/ \|/ \|/
1 -- 3 -- 7
```

Funny sum histo animation

1 5 3 7
Funny sum histo animation

24

And the result is $24 = 1 \times 2 + 5 + 3 + 7 \times 2$
Generic hylomorphism

- General recursion combinator
- 2 stages:
 1. Build an intermediate structure using unfold
 2. Collapse the intermediate structure using fold
- The intermediate structure corresponds to the implicit call tree
- The intermediate structure does not really have to be built
Dynamic Hylomorphism

- Dynamic recursion combinator
- The *fold* is replaced by the histomorphism

```
\[ F(A) \leftarrow \varphi \rightarrow A \]
\[ F(\mu F) \quad \text{in} \rightarrow \mu F \]
\[ F(\{()\psi\}) \rightarrow \psi \rightarrow B \]
CHALLENGES

• Histomorphism expressive power
• Dynamic hylomorphism expressive power
• Properties of transformation to dynamic recursion
• Deriving dynamic definition
Case study

• Fibonacci numbers
• Binary partition number
• Levenshtein (Edit) distance
• Longest common subsequence

• Only first two can be defined as pure histomorphisms
• General recursion is needed
Inspiration

Fibonacci dependency tree

Collapsed dependency graph
Inspiration (2)

Levenshtein (Edit) distance dependency tree

\[
\begin{align*}
D_{ij} & \\
D_{i-1j} & D_{i-1j-1} & D_{ij-1} \\
D_{i-2j} & D_{i-2j-1} & D_{i-1j-1} & D_{i-2j-2} & D_{i-1j-2} & D_{i-1j-1} & D_{i-1j-2} & D_{ij-2}
\end{align*}
\]
Inspiration (3)

Levenshtein (Edit) distance collapsed dependency graph
**Transformation**

- Original definition: \( f = \psi \circ Tf \circ \varphi \)
- Dynamic definition: \( f = \psi \circ \sigma \circ T'[\langle f, \text{in}^{-1}\rangle] \circ \varphi' \)
  - \( \varphi' \) generates more compact intermediate structure
  - \( T' \) defines the structure recursive pattern
  - \( \sigma \) restores one level of the old structure
  - \( \sigma \) and \( T' \) are uniquely determined by \( \varphi' \)
- The consumer (algebra) part is preserved
- The producer (coalgebra) part is consistently updated


**DEPENDENCY ALGEBRA**

Let

- Original dependency producers: \( h_i : A \rightarrow A \)
- Dynamic dependency producers: \( h'_j : A \rightarrow A \)
- Projections: \( \pi_i : T^\nu (C) \rightarrow T^\nu (C) \),
  \[
  \pi_i = [\text{in}, \text{out}_i \circ \text{outr}] \circ \text{in}^{-1}
  \]
- Deep projections:
  \[
  \pi_i^* = \text{outl} \circ \pi'_{k_l} \circ \pi'_{k_{l-1}} \circ \cdots \circ \pi'_{k_2} \circ \text{out}_{k_1}
  \]
- Induction indicator: \( p : A \rightarrow \text{Bool} \)
Dependency algebra (2)

Then

- \( \varphi = (id + \langle id, h_1, h_2, \ldots, h_n \rangle) \circ p? \)
- \( \varphi' = (id + \langle id, h'_1, h'_2, \ldots, h'_m \rangle) \circ p'? \)
- \( \sigma = [\text{inl}, (out_0 + \langle out_0, \pi^*_1, \pi^*_2, \ldots, \pi^*_n \rangle) \circ (p \circ out_0)?] \)

And \( \varphi' \) has to satisfy following for each \( i \in I \), each \( s \in S' \):

\[
P(s, i) = \langle k_1, k_2, \ldots, k_l \rangle \in J^*
\]

\[
\text{outl} \circ \pi_i \circ [(\langle id, \varphi \rangle)] = \text{outl} \circ \pi'_{k_l} \circ \pi'_{k_{l-1}} \circ \cdots \circ \pi'_{k_1} \circ [(\langle id, \varphi' \rangle)]
\]

\[
h_i(s) = h'_{k_l} \circ h'_{k_{l-1}} \circ \cdots \circ h'_{k_1}(s)
\]
Future work

• More categorical approach to transformation

• A solid proof for dependency algebra

• (Semi)-automatical derivation for restricted cases