Private Itemset Support Counting

Sven Laur'
swen@math.ut.ee

Helsinki University of Technology

I Joint work with Helger Lipmaa and Taneli Mielikdinen

What is frequent itemset mining?

Many datasets are inherently discrete:

e supermarket data
e various error log records—web-logs, network failures etc
e search indices used by Google, Spotlight etc

e medical and genetic databases

Intuition: Frequent patterns capture main characteristics of the dataset:

e They reveal “useful” causal dependencies.

e They can be used to distinguish between typical and abnormal behaviour.

Frequent itemset mining in a nutshell

Attributes
_ A\

Transactions
_ A

g~ WN (T3
— = == O)
— O O~ (T
o r oo rQ
o == oY
— o o~ o .l

Database D consists of m transactions that can contain up to n attributes.

A transaction DJi| can be viewed as a subset of attributes or a binary vector.

For example D[1] ={B,C}, D[2| ={A,B,D,E} and D|5] ={A, B, E}.

Frequent itemset mining in a nutshell

#1A | B|C|D|E
144011100
2 |1 |1]0] 1|1
3101010
4 111011110
511111001

Frequencies are just normalised versions of supports:

supp(Q) = #{¢: @ C D[i]} = supp({4,D}) =3

freq(Q) = supp(Q) = freq({A,D}) = 0.6

m

Short outline of my talk

Private itemset support counting
Previous work

Online algorithms

Offline algorithms

Theoretical bounds

Loopholes in the bounds

Private itemset support counting

=] N
— o o r ||l
o oo ~[Q
orrrollg

~ o o~ ol

Client should learn supp(Q) while Server should learn nothing new.

Previous work and possible applications

Privacy-preserving support counting techniques are also used when

e the database is divided horizontally between two or more parties;

e the database is divided vertically between two or more parties.

Then the itemset Q is a public and the main problem is secure aggregation.

Our setting is different:
e Clients can execute few queries, instead of buying the whole dataset.
e Server does not have to reveal the whole data.

e Client can do focused frequent itemset mining.

Homomorphic encryption as a main tool

Given a public key pk, one can compute an encryption Ey(z) for x € P.
Given a secret key sk, one can decrypt Dy (Ep(z)) = .
Without a secret key sk it is infeasible to distinguish Ep(z) from Equ(y).

It is possible to compute with encrypted values

Eo(x) - Egk(y) = Epk(x +y)
Ep(x)? = Ep(x - y)

where computations are done in P ~ Z,,.

Efficient subset inclusion test

The duality between sets and binary vectors yields

QCDfi] «= |vj: Dlill]=0=Qljl=0] <= Y Qlj]=0

Jj:D[i][5]=0

Homomorphic PSI protocol
e Client sends encryptions Ey(Q[1]),..., Ex(Q[n]).

o Server computes d = [[; py15-0 Epk(QJ]) and replies ¢ = d*, s — P.
e Client computes t = Dg(c). If t =0 then Q@ C Dli].

In the corresponding private itemset counting protocol, Server computes
replays for every row D|i] and shuffles the answers before sending.

Main properties of online PISC protocol

e Tolerable computational complexity. Server's workload is O(w + m)
operations where w is the number of ones in the database. Client's
workload is ©(n + m). This is feasible in practice.

e Heavy network traffic. The communication complexity is ©(m). Roughly
320 — 2048 bits per row.

e Server cannot do any pre-computations.

Can we do better?

Alternatively, Server could precompute the supports of all itemsets.

e This is clearly infeasible as there are 2" possible itemsets.

e However, it possible to compute the supports of all frequent itemsets,
i.e. supports for all sets X such that supp(X) > 7.

But then the client must obliviously access the database of frequent items.

e Such oblivious keyword transfer protocols exist.
e Some of them are quite efficient.

e No information is given for infrequent sets.

10

Optimal solution for static databases

Server encrypts database elements with pseudorandom keys

0] supp(X1)
o
ObPrfy(X;)

0°]| supp(X2)
D
ObPrfy(X>)

0] supp(X3)
D
ObPrfy(X5)

0°|| supp(Xy)
o
ObPrfy(Xp)

and sends it to Client.

For each query Q, Client and Server securely compute ObPrfy (Q).

Client decrypts a database element whenever it is possible.

Online workload is poly-logarithmic for Client and Server!

Initial communication complexity is tolerable.

Not many good candidates for ObPrf are known.

Theoretical bounds

Any exact PISC protocol gives a rise to PIR protocol and vise versa.

e \We can encode 2" bits information into 2" x n PISC database.

e The corresponding PIR—PISC reduction is quite tight:

- Any PISC protocol with sub-linear communication gives a raise to
PIR protocol with sub-linear communication (“a challenging puzzle
for cryptographers”).

- At any time the discrepancy between best communication complexities
is different by a logarithmic term.

e Radically new ideas are needed to reduce the communication complexity
of PISC protocols.

12

How can we beat these theoretical bounds?

Random sampling from the database provides good approximations:

e Communication complexity is independent from number of rows.
- Roughly 40,000 rows are needed to approximate frequencies with
absolute precision 0.01 with the confidence level 99.9%.

e Hoeffding and Chernoff bounds provide exponentially small failure
probabilities w.r.t. number of rows.

e More complex bounds based on VC-dimension give failure bounds for
simultaneous approximation of all subset frequencies.

13

Conclusions

Private itemset counting is a hard problem. Any significant advance

gives a raise to new PIR protocol.

We need good oblivious keyword transfer protocols.

- Low communication complexity of such protocols is over-hyped.

- Actually, we need protocols with poly-logarithmic online complexity.
- Offline complexity is quite irrelevant.

Randomised methods can provide loopholes to beat theoretical bounds.

State of the art cryptography cannot support more advanced

representations of frequent itemsets like condensed sets, FP-trees etc.

14

