
Private Itemset Support Counting

Sven Laur†

swen@math.ut.ee

Helsinki University of Technology

† Joint work with Helger Lipmaa and Taneli Mielikäinen

What is frequent itemset mining?

Many datasets are inherently discrete:

• supermarket data

• various error log records—web-logs, network failures etc

• search indices used by Google, Spotlight etc

• medical and genetic databases

Intuition: Frequent patterns capture main characteristics of the dataset:

• They reveal “useful” causal dependencies.

• They can be used to distinguish between typical and abnormal behaviour.

1

Frequent itemset mining in a nutshell

T
ra

n
sa

ct
io

n
s

︷
︸︸

︷

Attributes︷ ︸︸ ︷
A B C D E

1 0 1 1 0 0
2 1 1 0 1 1
3 1 0 0 1 0
4 1 0 1 1 0
5 1 1 0 0 1

Database D consists of m transactions that can contain up to n attributes.

A transaction D[i] can be viewed as a subset of attributes or a binary vector.

For example D[1] = {B,C}, D[2] = {A, B,D,E} and D[5] = {A,B,E}.

2

Frequent itemset mining in a nutshell

A B C D E

1 0 1 1 0 0
2 1 1 0 1 1
3 1 0 0 1 0
4 1 0 1 1 0
5 1 1 0 0 1

Frequencies are just normalised versions of supports:

supp(Q) = � {i : Q ⊆ D[i]} ⇒ supp({A, D}) = 3

freq(Q) =
supp(Q)

m
⇒ freq({A,D}) = 0.6

3

Short outline of my talk

• Frequent itemset mining

• Private itemset support counting

• Previous work

• Online algorithms

• Offline algorithms

• Theoretical bounds

• Loopholes in the bounds

4

Private itemset support counting

???
supp(Q)

m1−−−−→
m2←−−−−

A B C D E

1 0 1 1 0 0
2 1 1 0 1 1
3 1 0 0 1 0
4 1 0 1 1 0
5 1 1 0 0 1

Client should learn supp(Q) while Server should learn nothing new.

5

Previous work and possible applications

Privacy-preserving support counting techniques are also used when

• the database is divided horizontally between two or more parties;

• the database is divided vertically between two or more parties.

Then the itemset Q is a public and the main problem is secure aggregation.

Our setting is different:

• Clients can execute few queries, instead of buying the whole dataset.

• Server does not have to reveal the whole data.

• Client can do focused frequent itemset mining.

6

Homomorphic encryption as a main tool

• Given a public key pk, one can compute an encryption Epk(x) for x ∈ P.

• Given a secret key sk, one can decrypt Dsk(Epk(x)) = x.

• Without a secret key sk it is infeasible to distinguish Epk(x) from Epk(y).

• It is possible to compute with encrypted values

Epk(x) · Epk(y) = Epk(x + y)

Epk(x)y = Epk(x · y)

where computations are done in P � Zn.

7

Efficient subset inclusion test

The duality between sets and binary vectors yields

Q ⊆ D[i] ⇐⇒
[
∀j : D[i][j] = 0⇒ Q[j] = 0

]
⇐⇒

∑
j:D[i][j]=0

Q[j] = 0

Homomorphic PSI protocol

• Client sends encryptions Epk(Q[1]), . . . , Epk(Q[n]).

• Server computes d =
∏

j:D[i][j]=0 Epk(Q[j]) and replies c = ds, s← P.

• Client computes t = Dsk(c). If t = 0 then Q ⊆ D[i].

In the corresponding private itemset counting protocol, Server computes
replays for every row D[i] and shuffles the answers before sending.

8

Main properties of online PISC protocol

• Tolerable computational complexity. Server’s workload is Θ(w + m)
operations where w is the number of ones in the database. Client’s
workload is Θ(n + m). This is feasible in practice.

• Heavy network traffic. The communication complexity is Θ(m). Roughly
320− 2048 bits per row.

• Server cannot do any pre-computations.

9

Can we do better?

Alternatively, Server could precompute the supports of all itemsets.

• This is clearly infeasible as there are 2n possible itemsets.

• However, it possible to compute the supports of all frequent itemsets,
i.e. supports for all sets X such that supp(X) ≥ τ .

But then the client must obliviously access the database of frequent items.

• Such oblivious keyword transfer protocols exist.

• Some of them are quite efficient.

• No information is given for infrequent sets.

10

Optimal solution for static databases

• Server encrypts database elements with pseudorandom keys

0�|| supp(X1) 0�|| supp(X2) 0�|| supp(X3) . . . 0�|| supp(Xk)
⊕ ⊕ ⊕ . . . ⊕

ObPrfsk(X1) ObPrfsk(X2) ObPrfsk(X3) . . . ObPrfsk(Xk)

and sends it to Client.

• For each query Q, Client and Server securely compute ObPrfsk(Q).

• Client decrypts a database element whenever it is possible.

• Online workload is poly-logarithmic for Client and Server!

• Initial communication complexity is tolerable.

• Not many good candidates for ObPrf are known.

11

Theoretical bounds

Any exact PISC protocol gives a rise to PIR protocol and vise versa.

• We can encode 2n bits information into 2n × n PISC database.

• The corresponding PIR↔PISC reduction is quite tight:

- Any PISC protocol with sub-linear communication gives a raise to
PIR protocol with sub-linear communication (“a challenging puzzle
for cryptographers”).

- At any time the discrepancy between best communication complexities
is different by a logarithmic term.

• Radically new ideas are needed to reduce the communication complexity
of PISC protocols.

12

How can we beat these theoretical bounds?

Random sampling from the database provides good approximations:

• Communication complexity is independent from number of rows.
- Roughly 40, 000 rows are needed to approximate frequencies with

absolute precision 0.01 with the confidence level 99.9%.

• Hoeffding and Chernoff bounds provide exponentially small failure
probabilities w.r.t. number of rows.

• More complex bounds based on VC-dimension give failure bounds for
simultaneous approximation of all subset frequencies.

13

Conclusions

• Private itemset counting is a hard problem. Any significant advance
gives a raise to new PIR protocol.

• We need good oblivious keyword transfer protocols.

- Low communication complexity of such protocols is over-hyped.

- Actually, we need protocols with poly-logarithmic online complexity.

- Offline complexity is quite irrelevant.

• Randomised methods can provide loopholes to beat theoretical bounds.

• State of the art cryptography cannot support more advanced
representations of frequent itemsets like condensed sets, FP-trees etc.

14

