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Background

In the SOS 2005 paper, we proposed a novel method for
developing compositional natural semantics and Hoare
logics for languages with jumps

The central idea was to use the structure of finite disjoint
unions as a phrase structure.
Here, we develop these ideas further, and consider an
operand stack based language PUSH

More demanding since stack errors can occur
Makes sense to study type systems for attesting code
safety
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Syntax of PUSH

The instructions instr ∈ Instr are given by the grammar

instr ::= load x | store x | push n

| add | eq | ... | goto ` | gotoF `

States (`, ζ, σ) are triples of a label (value of the pc), stack
and store. Stacks are lists of integers and booleans. Store
is a mapping from register names to values.
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Single-step reduction rules of PUSH

(`, store x) ∈ c n ∈ Z
c ` (`,n :: ζ, σ) � (`+ 1, ζ, σ[x 7→ n])

store

(`, load x) ∈ c
c ` (`, ζ, σ) � (`+ 1, σ(x) :: ζ, σ)

load

. . .

(`,goto m) ∈ c
c ` (`, ζ, σ) � (m, ζ, σ)

goto

(`,gotoF m) ∈ c
c ` (`, tt :: ζ, σ) � (`+ 1, ζ, σ)

gotoF

The associated multi-step reduction relation �∗ is the
reflexive-transitive closure of the single-step relation.
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Structured version of PUSH

Some structure should be introduced into PUSH code.

We use the structure of finite unions of non-overlapping
pieces of code.

sc ::= (`, instr) | 0 | sc0 ⊕ sc1

Domain dom(sc) of a piece of code sc is the set of all
labels in the code

A piece of code is wellformed iff the labels of all of its
instructions are different
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Natural semantics of SPUSH

We want to give natural semantics for the language, on
which to base the Hoare logic and type systems.

Need to distinguish between non-termination and errors
We introduce a special abnormal evaluation relation.
(Alternatively, the evaluation relation could be indexed by a
doubleton)
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Natural semantics rules

(`, ζ, σ) �(`, load x)� (`+ 1, σ(x) :: ζ, σ)

n ∈ Z
(`,n :: ζ, σ) �(`, store x)� (`+ 1, ζ, σ[x 7→ n])

∀n ∈ Z, ζ ′ ∈ (Z ∪ B)∗. ζ 6= n :: ζ ′

(`, ζ, σ) �(`, store x)�p (`, ζ, σ)
. . .

` ∈ dom(sc i) (`, ζ, σ) �sc i� (`′′, ζ ′′, σ′′) (`′′, ζ ′′, σ′′) �sc0 ⊕ sc1� (`′, ζ ′, σ′)

(`, ζ, σ)�sc0 ⊕ sc1� (`′, ζ ′, σ′)

` ∈ dom(sc i) (`, ζ, σ) �sc i�p (`′, ζ ′, σ′)
(`, ζ, σ)�sc0 ⊕ sc1�p (`′, ζ ′, σ′)

` ∈ dom(sc i) (`, ζ, σ) �sc i� (`′′, ζ ′′, σ′′) (`′′, ζ ′′, σ′′) �sc0 ⊕ sc1�p (`′, ζ ′, σ′)
(`, ζ, σ) �sc0 ⊕ sc1�p (`′, ζ ′, σ′)

. . .
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Properties of the semantics

The natural semantics agrees to the small-step semantics.

Normal termination guarantees the pc to be outside of the
domain of the code in the final state.

Abnormal termination guarantees the pc to be in the
domain of the code in the final state.

The semantics of a structured piece of code does not
depend on the way it is structured
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From natural semantics to Hoare logic

Hoare triples relate pre- and postconditions about a state.

State contains a pc value and a stack; we use individual
constants pc and st to refer to them in assertions.

The logic we define is an error-free partial-correctness
logic.
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Hoare rules

{
(pc = ` ∧Q[pc, st 7→ `+ 1, x :: st ])

∨(pc 6= ` ∧Q)

}
(`, load x)

{
Q

}

 (pc = ` ∧ ∃z ∈ Z,w ∈ (Z ∪ B)∗.
st = z :: w ∧Q[pc, st , x 7→ `+ 1,w , z])

∨(pc 6= ` ∧Q)

 (`, store x)
{

Q
}

. . .

{pc ∈ dom(sc0) ∧ P} sc0 {P} {pc ∈ dom(sc1) ∧ P} sc1 {P}
{P} sc0 ⊕ sc1 {pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ P}

. . .
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Properties of the logic

Theorem (Soundness of Hoare logic)

If {P} sc {Q} and (`, ζ, σ) |=α P, then

for any (`′, ζ ′, σ′) such that (`, ζ, σ) �sc� (`′, ζ ′, σ′), we have
(`′, ζ ′, σ′) |=α Q

and (ii) there is no (`′, ζ ′, σ′) such that
(`, ζ, σ) �sc�p (`′, ζ ′, σ′).

Theorem (Completeness of Hoare logic)

If, for any (`, ζ, σ) and α such that (`, ζ, σ) |=α P, it holds that

for any (`′, ζ ′, σ′) such that (`, ζ, σ) �sc� (`′, ζ ′, σ′), we have
(`′, ζ ′, σ′) |=α Q

there is no (`′, ζ ′, σ′) such that (`, ζ, σ) �sc�p (`′, ζ ′, σ′)

then {P} sc {Q}.
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From logic to type systems

The logic can be weakened to a type system for
establishing basic code safety - absence of type and stack
underflow errors.

Intuitive meaning of a typing: if a given piece of code is run
from an initial state in a given pretype, then

if it terminates normally, the final state is in the posttype
it cannot terminate abnormally.
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Type system for SPUSH for error-freedom

Value types τ ∈ ValType and stack types Ψ ∈ StackType
are defined by the grammars

τ ::= ⊥ | int | bool |?
Ψ ::= ⊥ | [] | τ :: Ψ | ∗

A state type Π ∈ StateType is a finite set of labelled stack
types.

A state type Π is wellformed iff no label in it labels more
than one stack type

We will use the notation Π�L for the restriction of a state
type Π to a domain L ⊆ Label , i.e.,
Π�L =df {(`,Ψ) | (`,Ψ) ∈ Π, ` ∈ L}.
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A state type Π ∈ StateType is a finite set of labelled stack
types.

A state type Π is wellformed iff no label in it labels more
than one stack type

We will use the notation Π�L for the restriction of a state
type Π to a domain L ⊆ Label , i.e.,
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Meaning of types

The meanings of value, stack and state types are set-theoretic:

L⊥ M =df ∅
L int M =df {int}

L boolM =df {bool}
L ? M =df {int,bool}
L [] M =df {[]}

L τ :: Ψ M =df {δ :: ψ | δ ∈ L τ M, ψ ∈ L Ψ M}
L ∗ M =df {int,bool}∗

L Π M =df {(`, ψ) | (`,Ψ) ∈ Π, ψ ∈ L Ψ M}
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Subtyping rules

τ ≤ τ ⊥ ≤ τ τ ≤ ?

Ψ ≤ Ψ

Ψ ≤ Ψ′′ Ψ′′ ≤ Ψ′

Ψ ≤ Ψ′ ⊥ :: Ψ ≤ ⊥ τ :: ⊥ ≤ ⊥

⊥ ≤ Ψ Ψ ≤ ∗
τ ≤ τ ′ Ψ ≤ Ψ′

τ :: Ψ ≤ τ ′ :: Ψ′

∀`,Ψ. (`,Ψ) ∈ Π ⊃ Ψ = ⊥ ∨ ∃Ψ′. (`,Ψ′) ∈ Π′ ∧Ψ ≤ Ψ′

Π ≤ Π′
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Typing rules

(`, load x) :
{(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ}

∪ {(`, ∗) | (`+ 1, ∗) ∈ Π ∪ Π�{`}
−→ Π

(`, store x) : {(`, int :: Ψ) | (`+ 1,Ψ) ∈ Π} ∪ Π�{`} −→ Π

. . .

sc0 : Π�dom(sc0)
−→ Π sc1 : Π�dom(sc1)

−→ Π

sc0 ⊕ sc1 : Π −→ Π�dom(sc0)∪dom(sc1)

Π′
0 ≤ Π0 sc : Π0 −→ Π1 Π1 ≤ Π′

1

sc : Π′
0 −→ Π′

1
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Abstract natural semantics

The type system is sound wrt the natural semantics, but it
isn’t (cannot) be complete.

We define abstract natural semantics to show the
completeness of the type system
The abstract semantics is a straightforward rewrite of the
concrete semantics to work on abstract states
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Abstract natural semantics

The type system is sound wrt the natural semantics, but it
isn’t (cannot) be complete.

Example

1 push false
2 gotoF 4
3 store x

We define abstract natural semantics to show the
completeness of the type system
The abstract semantics is a straightforward rewrite of the
concrete semantics to work on abstract states
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Abstract natural semantics of SPUSH

Abstract states (`, ψ) ∈ AbsState are pairs of labels and
abstract stacks: AbsState =df Label × AbsStack .
Abstract stack is a stack of (names of) value types:
AbsStack =df {int,bool}∗.

Abstract natural semantics rules:

(`, ψ) �(`, load x)� (`+ 1, int :: ψ)

(`, int :: ψ) �(`, store x)� (`+ 1, ψ)

∀ψ′ ∈ {int,bool}∗. ψ 6= int :: ψ′

(`, ψ) �(`, store x)�p (`, ψ)

. . .
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Properties of the type system

Typing is sound wrt the concrete and abstract natural
semantics.

Typing is complete wrt abstract natural semantics.

Besides type systems for stack and type error freedom,
compositional type systems presenting data flow analysis
can also be devised
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Type system for secure information flow

An example - type system for secure information flow

Central for the type system for secure information flow is a
distributive lattice (D,≤,∧,∨,L,H) of security levels for
information flowing in the program

Abstract states are quadruples of a label ` ∈ Label , a
security level d ∈ D for the current pc value, and an
abstract stack and an abstract store:
AbsState =df Label × D× AbsStack × AbsStore .

An abstract stack is a list of security levels. An abstract
store records the security levels of the variables.
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Abstract natural semantics fo secure information flow

(`,d , ψ,Σ) �(`, load x)� (`+ 1,d ,Σ(x) ∨ d :: ψ,Σ)
loadans

(`,d ,d ′ :: ψ,Σ) �(`, store x)� (`+ 1,d , ψ,Σ[x 7→ d ′ ∨ d ])
storeans

...

` ∈ dom(sc i) (`,d , ψ,Σ) �sc i� (`′′,d ′′, ψ′′,Σ′′)
(`′′,d ′′, ψ′′,Σ′′) �sc0 ⊕ sc1� (`′,d ′, ψ′,Σ′) sc0 ⊕ sc1 single-exit

(`,d , ψ,Σ) �sc0 ⊕ sc1� (`′,d , ψ′,Σ′)
⊕ans

` ∈ dom(sc i) (`,d , ψ,Σ) �sc i� (`′′,d ′′, ψ′′,Σ′′)
(`′′,d ′′, ψ′′,Σ′′) �sc0 ⊕ sc1� (`′,d ′, ψ′,Σ′) sc0 ⊕ sc1 multiple-exit

(`,d , ψ,Σ) �sc0 ⊕ sc1� (`′,d ′, ψ′,Σ′)
⊕ans

...
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Types system for secure information flow

(`, store x) :
{(`,Σ(x) ∧ d ,Σ(x) :: Ψ,Σ) | (`+ 1,d ,Ψ,Σ) ∈ Π}

∪ Π�{`}
−→ Π

storets

...

sc0 : Π�dom(sc0)
−→ Π sc1 : Π�dom(sc1)

−→ Π sc0 ⊕ sc1 multiple-exit

sc0 ⊕ sc1 : Π −→ Π�dom(sc0⊕sc1)

⊕ts
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Conclusion

The original idea of structuring low level languages to
obtain a compositional Hoare logic applies to stack based
languages.

The logic can be weakened to type system attesting code
safety, but also to type systems reflecting dataflow
analysis.

Abnormal termination can be handled without a problem.
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