Compositional Type Systems for Stack-Based

Low-Level Languages

A. Saabas T. Uustalu

Institute of Cybernetics

Theory Days, Viinistu, 29 October 2005

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Background

@ In the SOS 2005 paper, we proposed a novel method for
developing compositional natural semantics and Hoare
logics for languages with jumps

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Background

@ In the SOS 2005 paper, we proposed a novel method for
developing compositional natural semantics and Hoare
logics for languages with jumps

@ The central idea was to use the structure of finite disjoint
unions as a phrase structure.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Background

@ In the SOS 2005 paper, we proposed a novel method for
developing compositional natural semantics and Hoare
logics for languages with jumps

@ The central idea was to use the structure of finite disjoint
unions as a phrase structure.

@ Here, we develop these ideas further, and consider an
operand stack based language PusH

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Background

@ In the SOS 2005 paper, we proposed a novel method for
developing compositional natural semantics and Hoare
logics for languages with jumps

@ The central idea was to use the structure of finite disjoint
unions as a phrase structure.

@ Here, we develop these ideas further, and consider an
operand stack based language PusH

@ More demanding since stack errors can occur

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Background

@ In the SOS 2005 paper, we proposed a novel method for
developing compositional natural semantics and Hoare
logics for languages with jumps

@ The central idea was to use the structure of finite disjoint
unions as a phrase structure.

@ Here, we develop these ideas further, and consider an
operand stack based language PusH

@ More demanding since stack errors can occur
o Makes sense to study type systems for attesting code
safety

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Syntax of PUsH

@ The instructions instr € Instr are given by the grammar

instr ::= load x | store x | push n
|add | eq | ... | goto ¢ | gotoF ¢

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Syntax of PUsH

@ The instructions instr € Instr are given by the grammar

instr ::= load x | store x | push n
|add | eq | ... | goto ¢ | gotoF ¢

@ States (4, (, o) are triples of a label (value of the pc), stack
and store. Stacks are lists of integers and booleans. Store
is a mapping from register names to values.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Single-step reduction rules of PusH

(¢,storex)ec neZ

Cr(n=Co)—((+1LCoxmn]) o

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Single-step reduction rules of PusH

(¢,storex)ec neZ

Cr(n=Co)—((+1LCoxmn]) o

(¢,load x) € c
ck (¢ o)—>(L+10(x):(0)

load

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Single-step reduction rules of PusH

(¢,storex)ec neZ

Cr(n=Co)—((+1LCoxmn]) o

(¢,load x) € c
ck (¢ o)—>(L+10(x):(0)

load

(¢,gotom) € c

goto
¢k (¢ o)~ (m(o)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Single-step reduction rules of PusH

(¢,storex)ec neZ

Cr(n=Co)—((+1LCoxmn]) o

(¢,load x) € c

CH(6Co) » (L Lo() = (o) 0
(¢,gotom) € c goto
¢k (4,¢ o)~ (m,(o)
(¢,gotoF m) e c gotoF

ck(tt: (o) > (L+1,(,0)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Single-step reduction rules of PusH

(¢,storex)ec neZ

ch(nGo) > ((+1,¢afx —n]) SO
(¢,load x) € c load
ck (¢ o)—>(L+10(x):(0) oa
(¢,gotom) € c goto
¢k (4,¢ o)~ (m,(o)
(¢,gotoF m) e c gotoF

ck(tt: (o) > (L+1,(,0)

The associated multi-step reduction relation —* is the
reflexive-transitive closure of the single-step relation.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Structured version of PusH

@ Some structure should be introduced into PusH code.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Structured version of PusH

@ Some structure should be introduced into PusH code.

@ We use the structure of finite unions of non-overlapping
pieces of code.

sc = (¢,instr) | 0 | sco & sc;

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Structured version of PusH

@ Some structure should be introduced into PusH code.

@ We use the structure of finite unions of non-overlapping
pieces of code.

sc = (¢,instr) | 0 | sco & sc;

@ Domain dom(sc) of a piece of code sc is the set of all
labels in the code

@ A piece of code is wellformed iff the labels of all of its
instructions are different

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics of SPusH

@ We want to give natural semantics for the language, on
which to base the Hoare logic and type systems.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics of SPusH

@ We want to give natural semantics for the language, on
which to base the Hoare logic and type systems.

@ Need to distinguish between non-termination and errors

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics of SPusH

@ We want to give natural semantics for the language, on
which to base the Hoare logic and type systems.
@ Need to distinguish between non-termination and errors
@ We introduce a special abnormal evaluation relation.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics of SPusH

@ We want to give natural semantics for the language, on
which to base the Hoare logic and type systems.
@ Need to distinguish between non-termination and errors

@ We introduce a special abnormal evaluation relation.
o (Alternatively, the evaluation relation could be indexed by a
doubleton)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics rules

¢, ¢, 0)>(4load X)= (£ +1,0(x) :: ¢,0)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics rules

¢, ¢, 0)>(4load X)= (£ +1,0(x) :: ¢,0)

nez
(¢,n:: ¢, 0) (¢, store x)— (£ + 1,¢, o[X — n])

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics rules

¢, ¢, 0)>(4load X)= (£ +1,0(x) :: ¢,0)
nez
(¢,n:: ¢, 0) (¢, store x)— (£ + 1,¢, o[X — n])
VnezZ. e(ZUB)*.C#£n: (!
(¢,¢,0)>(¢,store x)—i (£, ¢, 0)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics rules

¢, ¢, 0)>(4load X)= (£ +1,0(x) :: ¢,0)
nez
(¢,n:: ¢, 0) (¢, store x)— (£ + 1,¢, o[X — n])
VnezZ. e(ZUB)*.C#£n: (!
(¢,¢,0)>(¢,store x)—i (£, ¢, 0)

¢ edom(sci) (4,¢,0) »SC;%(E”,C”,U”.)“ ", ¢",0")>sco ®sci— (¢, (', 0')
(¢,¢,0)»sco @ sci— (¢, ¢, 0")

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Natural semantics rules

¢, ¢, 0)>(4load X)= (£ +1,0(x) :: ¢,0)
nez
(¢,n:: ¢, 0) (¢, store x)— (£ + 1,¢, o[X — n])
VnezZ. e(ZUB)*.C#£n: (!
(¢,¢,0)>(¢,store x)—i (£, ¢, 0)

le dOfT(SCi) (67 ¢ U) >SCj— (g//’ ¢ 0'//.). . (ZH’ ¢’ UN) >SCo © SC1— (ﬁ/’ ¢ OJ)
(¢,¢,0)»sco @ sci— (¢, ¢, 0")
¢ e dom(sci) (¢,¢,0)>sci— (¢, ¢ 0")
(Ea Cv U) >SCp D SC1— (E/a Clv 0/)
¢ edom(sci) (4,¢,0)>sci—(¢",¢",a") (£7,¢",0")>sco®sci—(¢,(,0")
(¢,¢,0)»sco @ sci— (¢, (' 0")

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Properties of the semantics

@ The natural semantics agrees to the small-step semantics.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Properties of the semantics

@ The natural semantics agrees to the small-step semantics.

@ Normal termination guarantees the pc to be outside of the
domain of the code in the final state.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Properties of the semantics

@ The natural semantics agrees to the small-step semantics.

@ Normal termination guarantees the pc to be outside of the
domain of the code in the final state.

@ Abnormal termination guarantees the pc to be in the
domain of the code in the final state.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Properties of the semantics

@ The natural semantics agrees to the small-step semantics.

@ Normal termination guarantees the pc to be outside of the
domain of the code in the final state.

@ Abnormal termination guarantees the pc to be in the
domain of the code in the final state.

@ The semantics of a structured piece of code does not
depend on the way it is structured

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

From natural semantics to Hoare logic

@ Hoare triples relate pre- and postconditions about a state.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

From natural semantics to Hoare logic

@ Hoare triples relate pre- and postconditions about a state.

@ State contains a pc value and a stack; we use individual
constants pc and st to refer to them in assertions.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

From natural semantics to Hoare logic

@ Hoare triples relate pre- and postconditions about a state.

@ State contains a pc value and a stack; we use individual
constants pc and st to refer to them in assertions.

@ The logic we define is an error-free partial-correctness
logic.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Hoare rules

(pc = ¢ A Q[pc,st — £+ 1,x ::st])
{\/(pc;éf/\Q) }(E,Ioadx){Q}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Hoare rules

(pc =¢AQ[pc,st — £+ 1,x ::st])
{\/(pc;ééAQ) }(e,loadx){Q}

{pc =1 Ahead(x ::st) =5} (1,load x) {head(st) = 5}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Hoare rules

(pc =¢AQ[pc,st — £+ 1,x ::st])
{\/(pc;ééAQ) }(e,loadx){Q}

{pc =1 Ax =5}(1,load x) {head(st) = 5}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Hoare rules

(pc = ¢ A Q[pc,st — £+ 1,x ::st])
{\/(pc;éf/\Q) }(E,Ioadx){Q}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Hoare rules

(pc = ¢ A Q[pc,st — £+ 1,x ::st])
{\/(pc;éf/\Q) }(E,Ioadx){Q}

(pc=¢ATFz € Z,w € (ZUB)*.
st=z :w AQ[pc,st,x — £+ 1,w,z]) » ({,storex) {Q }
V(pe #LAQ)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Hoare rules

(pc = ¢ A Q[pc,st — £+ 1,x ::st])
{\/(pc;éf/\Q) }(E,Ioadx){Q}

(pc=¢ATFz € Z,w € (ZUB)*.
st=z :w AQ[pc,st,x — £+ 1,w,z]) » ({,storex) {Q }
V(pe #LAQ)

{pc € dom(sco) AP}sco{P} {pc € dom(sc;)AP}sc;{P}
{P}sco @ scy {pc ¢ dom(scg) A pc ¢ dom(sc1) AP}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Properties of the logic
Theorem (Soundness of Hoare logic)

If {P}sc{Q}and (¢,(,0) =, P, then
e forany (¢,{’,0’) such that (¢,(, o) >sc— (¢, (', o'), we have
(¢,¢",0") Fa Q
@ and (ii) there is no (¢, (', ') such that
(4,¢,0)>sc— (¢, (', 0").

Theorem (Completeness of Hoare logic)

If, for any (¢, ¢, o) and « such that (¢, ¢, 0) =, P, it holds that

e for any (¢,¢’,¢’) such that (¢, ¢, o) >sc— (¢, (', 0’), we have
(¢,¢",0") Fa Q

@ thereis no (¢, (’,0’) such that (¢, ¢, o) >»sc— (¢, (', o)

then {P}sc {Q}.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

From logic to type systems

@ The logic can be weakened to a type system for
establishing basic code safety - absence of type and stack
underflow errors.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

From logic to type systems

@ The logic can be weakened to a type system for
establishing basic code safety - absence of type and stack
underflow errors.

@ Intuitive meaning of a typing: if a given piece of code is run
from an initial state in a given pretype, then

e if it terminates normally, the final state is in the posttype
e it cannot terminate abnormally.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for SPusH for error-freedom

@ Value types 7 € ValType and stack types W € StackType
are defined by the grammars

T = 1 |int| bool|?
Vo= 1|[]|7:W]|x

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for SPusH for error-freedom

@ Value types 7 € ValType and stack types W € StackType
are defined by the grammars

T = 1 |int| bool|?
Vo= 1|[]|7:W]|x

@ A state type I € StateType is a finite set of labelled stack
types.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for SPusH for error-freedom

@ Value types 7 € ValType and stack types W € StackType
are defined by the grammars

T = 1 |int| bool|?
Vo= 1|[]|7:W]|x

@ A state type I € StateType is a finite set of labelled stack
types.

@ A state type I is wellformed iff no label in it labels more
than one stack type

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for SPusH for error-freedom

@ Value types 7 € ValType and stack types W € StackType
are defined by the grammars

T = 1 |int| bool|?
Vo= 1|[]|7:W]|x

@ A state type I € StateType is a finite set of labelled stack

types.
@ A state type I is wellformed iff no label in it labels more
than one stack type

@ We will use the notation], for the restriction of a state
type I to a domain L C Label, i.e.,
My =g {(L, W) | (¢, W) € N, L eL}.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =af 0

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =ar 0
(int) =g {int}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =af 0
(int) =g {int}
(bool) =gt {bool}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =d
(int) =qr {lnt}
(bool) =gt {bool}
(]7D =df {Int bOOl}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =d
(int) =qr {lnt}
(bool) =gt {bool}
(?) =ar {int,bool}
(0D =ar {03

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =ar
(int) =qr {lnt}
(bool) =gt {bool}
(?) =ar {int,bool}
(0D =ar {0}
(7:V) =gt {d:9|de(r) e (V)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =ar
(int) =qr {lnt}
(bool) =gt {bool}
(?) =ar {int,bool}
(0D =ar {0}
(7:V) =gt {d:9|de(r) e (V)
(*) =ar {int, bool}*

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Meaning of types

The meanings of value, stack and state types are set-theoretic:

(L) =ar
(int) =qr {lnt}
(bool) =gt {bool}
(?) =ar {int,bool}
(0D =ar {0}
(7:V) =gt {d:9|de(r) e (V)
(*) =ar {int, bool}*
(M) =ar {(6,0) [(£, W) €N € (W]}

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Subtyping rules

Subtyping rules

T<T 1 <r T<7

V< <y
U<y U<y Laowvw<l Tol<l

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Subtyping rules

T<T 1L <7 T

INA
)

V< <y
U<y U<y Laowvw<l Tol<l

r<r vy
1L <wv U < % R I AT Vi

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Subtyping rules

T<T 1 <r T<7

\I} S \Ij// \Ij// S \Ul

v <y Lawv< L Tol<1l

r<r vy
R I AT Vi

1L <v U< x

VOV (W) eNDW=1LVIW (W) el AV <V

n<n

A. Saabas, T. Uustalu

Compositional Type Systems for Stack-Based Languages

Typing rules

(LW | (E+1,7 W) e, int <7}

u {(ﬂ,*)\(€+1,*)eﬂuﬂ[m

—nN

(¢,load x) :

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Typing rules

(¢,load x) : {(v)[(L+1,7=W)elint<7}

U6 [(C+1%) eNUNg —
(¢,store x) - {(¢,int:: W) | (£ + 1, W) € N} UMz —

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Typing rules

(¢,load x) : {(v)[(L+1,7=W)elint<7}

U6 [(C+1%) eNUNg —
(¢,store x) - {(¢,int:: W) | (£ + 1, W) € N} UMz —

SCo : I_lfdon(s(:o) — SCy : I_I[don(scl) —

SCo ®sCy : M — nrdon(sco)udon(scl)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Typing rules

{(LW) [(41,75 W) € Mint < 7}
(¢,load x) : U{(,*)]| (£+1,%) € I'IU”[{Z}

(¢,store x) : {(¢,int:: W) | (¢+1,¥)eN}UN] "y

—

i —

SCo : I_lfdon(s(:o) — SCy : I_I[don(scl) —

SCo ®sCy : M — nrdon(sco)udon(scl)

I'I(’ng'lo sc: Mg — 1T I'Ilgl'l’l
sc: My — M

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Abstract natural semantics

@ The type system is sound wrt the natural semantics, but it
isn’t (cannot) be complete.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Abstract natural semantics

@ The type system is sound wrt the natural semantics, but it
isn't (cannot) be complete.

1 push false
2 gotoF 4
3 store x

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Abstract natural semantics

@ The type system is sound wrt the natural semantics, but it
isn’t (cannot) be complete.

e We define abstract natural semantics to show the
completeness of the type system

e The abstract semantics is a straightforward rewrite of the
concrete semantics to work on abstract states

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Abstract natural semantics of SPUSH

@ Abstract states (¢, 1) € AbsState are pairs of labels and
abstract stacks: AbsState =4 Label x AbsStack .
Abstract stack is a stack of (nhames of) value types:
AbsStack =g {int,bool}*.

@ Abstract natural semantics rules:
(67 ¢) >_(€a Ioad X)—> (E + :I.7 |nt o ¢)

(¢,int :: o) > (¢, store x)— (£ + 1,)

Vi’ € {int, bool}*. ¢ # int :: ¢’
(€,) (¢, store x)— (£,)

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Properties of the type system

@ Typing is sound wrt the concrete and abstract natural
semantics.

@ Typing is complete wrt abstract natural semantics.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Properties of the type system

@ Typing is sound wrt the concrete and abstract natural
semantics.

@ Typing is complete wrt abstract natural semantics.

@ Besides type systems for stack and type error freedom,
compositional type systems presenting data flow analysis
can also be devised

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for secure information flow

@ An example - type system for secure information flow

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for secure information flow

@ An example - type system for secure information flow

@ Central for the type system for secure information flow is a
distributive lattice (D, <, A, Vv, L, H) of security levels for
information flowing in the program

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for secure information flow

@ An example - type system for secure information flow

@ Central for the type system for secure information flow is a
distributive lattice (D, <, A, Vv, L, H) of security levels for
information flowing in the program

@ Abstract states are quadruples of a label ¢ € Label, a
security level d € D for the current pc value, and an
abstract stack and an abstract store:

AbsState =4 Label x D x AbsStack x AbsStore .

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Type system for secure information flow

@ An example - type system for secure information flow

@ Central for the type system for secure information flow is a
distributive lattice (D, <, A, Vv, L, H) of security levels for
information flowing in the program

@ Abstract states are quadruples of a label ¢ € Label, a
security level d € D for the current pc value, and an
abstract stack and an abstract store:

AbsState =4 Label x D x AbsStack x AbsStore .

@ An abstract stack is a list of security levels. An abstract
store records the security levels of the variables.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Abstract natural semantics fo secure information flow

loadins

(¢,d, ¢, X)>(¢,load x)—» (£ +1,d,Z(x)vd e, X)
storens

(¢,d,d’ ¢, X)>(¢,store X)— (¢ +1,d,¢,X[x — d’ vd])

¢ € dom(sc;) (¢,d, ¢, x)>sci— (¢',d", ", X"
(0", d" ", ") »scq ®scy— (¢,d’, ¢, L) SCo @ sc; single-exit

(¢,d,,¥)>sco dsci— (¢, d, 9, X))
¢ € dom(sc;) (¢,d, v, ¥)>sci— (¢",d", ", L")
(", d" ", ") »sco dscy— (¢,d’, ¢, L) SCo @ sc; multiple-exit
(¢,d, 9,) >sco @ scy—~ (¢',d", 4", 1)

693“3

@ans

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Types system for secure information flow

stores

{(,Z(x)Ad, Z(X) =¥, X) | (£+1,d,¥,X) e N} .

(¢, store x) : Un| n

{}

SCo : Mlgomsco) — M SC1: Mlgomse,) — M SCo & sc1 multiple-exit

Dt
SCO@Scl:n—)nrm S

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

Conclusion

@ The original idea of structuring low level languages to
obtain a compositional Hoare logic applies to stack based
languages.

@ The logic can be weakened to type system attesting code
safety, but also to type systems reflecting dataflow
analysis.

@ Abnormal termination can be handled without a problem.

A. Saabas, T. Uustalu Compositional Type Systems for Stack-Based Languages

