Arrays with Garbage

J. Power¹ O. Shkaravska²

¹University of Edinburgh

²Institute of Cybernetics at TUT

Teooriapäevad Viinistul, 2005

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Outline

Motivation

- Arrays: a Memory Model for Computations with Side Effects
- Previous Works

2 Our Results

- Arrays: a comodel for Global State
- The Category of Arrays is equivalent to Set
- The Category of Arrays is comonadic over Set

▲ 伊 ▶ ▲ 三 ▶ ▲

Arrays: a Memory Model for Computations with Side Effects Previous Works

< □ > < 同 > < 回 > < 回 > < 回 >

3

Outline

Motivation

- Arrays: a Memory Model for Computations with Side Effects
- Previous Works

2 Our Results

- Arrays: a comodel for Global State
- The Category of Arrays is equivalent to Set
- The Category of Arrays is comonadic over Set

Arrays: a Memory Model for Computations with Side Effects Previous Works

Pure Langauges

Pure functional languages do not subsume:

- variable assignments x := 2,
- field updates x.tail := another_list

The example stolen from G. Plotkin's talk

function	Sq(x:int):int
return	X * X
end	

Arrays: a Memory Model for Computations with Side Effects Previous Works

◆ロ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ■ ● ● ● ●

Pure Langauges

Pure functional languages do not subsume:

- variable assignments x := 2,
- field updates x.tail := another_list

The example stolen from G. Plotkin's talk

function	Sq(x:int):int
return	X * X
end	

Arrays: a Memory Model for Computations with Side Effects Previous Works

< ロ > < 同 > < 回 > < 回 > .

3

Pure Langauges

Pure functional languages do not subsume:

- variable assignments x := 2,
- field updates *x*.tail := another_list

The example stolen from G. Plotkin's talk

function	Sq(x:int):int
return	X * X
end	

Meaning of Sq
$$\llbracket int \rrbracket = \mathbb{N}$$
 $\llbracket Sq \rrbracket = \mathbb{N} \rightarrow \mathbb{N}$

Arrays: a Memory Model for Computations with Side Effects Previous Works

Impure Language = Pure Language + Side Effects

The next example stolen from G. Plotkin's talk

function Sq(x : int) : inty := 3return x * xend

Meaning of Sq II

 $\begin{bmatrix} Sq \end{bmatrix} = \mathbb{N} \times S \to \mathbb{N} \times S$ where $S = \mathbb{N}^{Loc}$ i.e. an ARRAY

Equivalently

 $\llbracket Sq \rrbracket = \mathbb{N} \to T_{state}(\mathbb{N}), \text{ is an arrow in Kleisli cat.},$ where $T_{state}(\mathbb{N}) = (\mathbb{N} \times S)^S$

Arrays: a Memory Model for Computations with Side Effects Previous Works

Impure Language = Pure Language + Side Effects

The next example stolen from G. Plotkin's talk

function Sq(x:int):inty:=3return x * xend

Meaning of Sq II

$$\begin{bmatrix} Sq \end{bmatrix} = \mathbb{N} \times S \to \mathbb{N} \times S$$

where $S = \mathbb{N}^{Loc}$ i.e. an ARRAY

Equivalently $\llbracket Sq \rrbracket = \mathbb{N} \to T_{state}(\mathbb{N})$, is an arrow in Kleisli cat. where $T_{state}(\mathbb{N}) = (\mathbb{N} \times S)^S$

Arrays: a Memory Model for Computations with Side Effects Previous Works

Impure Language = Pure Language + Side Effects

The next example stolen from G. Plotkin's talk

function Sq(x:int):inty:=3return x * xend

Meaning of Sq II

$$\begin{bmatrix} Sq \end{bmatrix} = \mathbb{N} \times S \to \mathbb{N} \times S$$

where $S = \mathbb{N}^{Loc}$ i.e. an ARRAY

Equivalently

$$\begin{split} \llbracket Sq \rrbracket &= \mathbb{N} \to \ T_{state}(\mathbb{N}), \text{ is an arrow in Kleisli cat.}, \\ \text{where} \quad T_{state}(\mathbb{N}) = (\mathbb{N} \times S)^S \end{split}$$

Arrays: a Memory Model for Computations with Side Effects Previous Works

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

Motivation

- Arrays: a Memory Model for Computations with Side Effects
- Previous Works

2 Our Results

- Arrays: a comodel for Global State
- The Category of Arrays is equivalent to Set
- The Category of Arrays is comonadic over Set

Arrays: a Memory Model for Computations with Side Effects Previous Works

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Sketches

Example: associativity for groups.

For any G and $a, b, c \in G$ it holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Arrays: a Memory Model for Computations with Side Effects Previous Works

・ロット (雪) (日) (日) 日

Sketches

Example: associativity for groups.

For any G and a, b, $c \in G$ it holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

< □ > < 同 > < 回 > < 回 > < 回 >

3

Sketches

Associativity holds for any group G.

Remove concrete G from the diagram – to get its sketch.

Arrays: a Memory Model for Computations with Side Effects Previous Works

Sketches

Lawvere Theory

• A category L with f.p.

• id. on objects strict f.p.p. $J : Nat^{op} \rightarrow L$

New arrows in L

Arrays: a Memory Model for Computations with Side Effects Previous Works

Sketches

Lawvere Theory

• A category L with f.p.

• id. on objects strict f.p.p. $J : Nat^{op} \rightarrow L$

New arrows in L

Motivation
Our Results
Conclusions

Model of L

- a f.p.p. functor $M : L \rightarrow C$,
- such functors form a category Mod(L, C), n.t. as arrows.
- C := **Set** M(1) := G $n = 1 + ... + 1, M(n) := G^n$

Motivation	
Our Results	
Conclusions	

◆ロ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ■ ● ● ● ●

Model of L

- a f.p.p. functor $M: L \rightarrow C$,
- such functors form a category Mod(L, C), n.t. as arrows.

$$C :=$$
Set
 $M(1) := G$
 $n = 1 + ... + 1, M(n) := G^n$

Arrays: a Memory Model for Computations with Side Effects Previous Works

Comodel of L

- a f.cp.p. functor $L^{op} \rightarrow C$,
- they form a category Comod(L, C), n.t. as arrows

 $Comod(L, C) \cong Mod(L, C^{op})^{op}$

```
Example: additional arrow n \rightarrow 1.

M(1) := X,

the map X \rightarrow X + \ldots + X (n times),

i.e. X \rightarrow n \times X
```

Comodel of L

- a f.cp.p. functor $L^{op} \rightarrow C$,
- they form a category Comod(L, C), n.t. as arrows

 $Comod(L, C) \cong Mod(L, C^{op})^{op}$

Example: additional arrow $n \rightarrow 1$. M(1) := X, the map $X \rightarrow X + \ldots + X$ (*n* times), i.e. $X \rightarrow n \times X$

Comodel of L

• a f.cp.p. functor $L^{op} \rightarrow C$,

• they form a category Comod(L, C), n.t. as arrows

 $Comod(L, C) \cong Mod(L, C^{op})^{op}$

Example: additional arrow $n \rightarrow 1$. M(1) := X, the map $X \rightarrow X + ... + X$ (*n* times), i.e. $X \rightarrow n \times X$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Comodel of L

• a f.cp.p. functor $L^{op} \rightarrow C$,

• they form a category Comod(L, C), n.t. as arrows

 $Comod(L, C) \cong Mod(L, C^{op})^{op}$

Example: additional arrow $n \rightarrow 1$. M(1) := X, the map $X \rightarrow X + \ldots + X$ (*n* times), i.e. $X \rightarrow n \times X$

Arrays: a Memory Model for Computations with Side Effects Previous Works

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Theory of Global State of P&P

The side-effect monad $(S \times (-))^S$, $S = V^{Loc}$, where *Loc* is a finite set of locations, *V* is a countable set of values.

 $I: V \longrightarrow Loc$ $u: 1 \longrightarrow Loc \times V$

$$M(1) := A$$

$$lookup : A^V \longrightarrow A^{Loc}$$

$$update : A \longrightarrow A^{Loc \times V}$$

Arrays: a Memory Model for Computations with Side Effects Previous Works

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Theory of Global State of P&P

The side-effect monad $(S \times (-))^S$, $S = V^{Loc}$, where *Loc* is a finite set of locations, *V* is a countable set of values.

 $I: V \longrightarrow Loc$ $u: 1 \longrightarrow Loc \times V$

$$M(1) := A$$

$$lookup : A^V \longrightarrow A^{Loc}$$

$$update : A \longrightarrow A^{Loc \times V}$$

Arrays: a Memory Model for Computations with Side Effects Previous Works

・ロット (雪) (日) (日) 日

Theory of Global State of P&P

The side-effect monad $(S \times (-))^S$, $S = V^{Loc}$, where *Loc* is a finite set of locations, *V* is a countable set of values.

$$I: V \longrightarrow Loc$$
$$u: 1 \longrightarrow Loc \times V$$
$$M(1) := A$$
$$lookup: A^{V} \longrightarrow A^{Loc}$$
$$update: A \longrightarrow A^{Loc \times V}$$

Arrays: a Memory Model for Computations with Side Effects Previous Works

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Theory of Global State of P&P

$$M(1) := A = (S \times X)^{S}$$

lookup : $A^{V} \longrightarrow A^{Loc}$
update : $A \longrightarrow A^{Loc \times V}$

(lookup(t))(loc)(s) = let v := s(loc) in t(v)(s)(update(t))(loc, v)(s) = t(s[loc := v])

Arrays: a Memory Model for Computations with Side Effects Previous Works

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theory of Global State of P&P

$$\begin{array}{l} M(1) := A = (S \times X)^S \\ lookup : A^V \longrightarrow A^{Loc} \\ update : A \longrightarrow A^{Loc \times V} \end{array}$$

$$(lookup(t))(loc)(s) = let v := s(loc) in t(v)(s)$$

 $(update(t))(loc, v)(s) = t(s[loc := v])$

ation	Arrays: a comodel for Global State
sults	The Category of Arrays is equivalent to Se
sions	The Category of Arrays is comonadic over

- Arrays: a Memory Model for Computations with Side Effects
- Previous Works

2 Our Results

- Arrays: a comodel for Global State
- The Category of Arrays is equivalent to Set

Moti Our R Conclu

The Category of Arrays is comonadic over Set

< /₽ > < ⊑ >

Arrays: a comodel for Global State The Category of Arrays is equivalent to Set The Category of Arrays is comonadic over Set

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・ 国

Comodel for Global State

$I: V \longrightarrow Loc$ $u: 1 \longrightarrow Loc \times V$

(Loc, V)-array is a set M(1) = A together with functions

 $\begin{array}{l} \textit{sel}: \textit{A} \times \textit{Loc} \longrightarrow \textit{A} \times \textit{V} \\ \textit{upd}: \textit{A} \times \textit{Loc} \times \textit{V} \longrightarrow \textit{A} \end{array}$

$$sel : A \times Loc \longrightarrow V$$
$$upd : A \times Loc \times V \longrightarrow A$$

・ロット (雪) (日) (日) 日

Comodel for Global State

$$I: V \longrightarrow Loc$$
$$u: 1 \longrightarrow Loc \times V$$

(Loc, V)-array is a set M(1) = A together with functions

$$\begin{array}{l} \textit{sel}: \textit{A} \times \textit{Loc} \longrightarrow \textit{A} \times \textit{V} \\ \textit{upd}: \textit{A} \times \textit{Loc} \times \textit{V} \longrightarrow \textit{A} \end{array}$$

$$sel : A \times Loc \longrightarrow V$$
$$upd : A \times Loc \times V \longrightarrow A$$

・ロット (雪) (日) (日) 日

Comodel for Global State

$$I: V \longrightarrow Loc$$
$$u: 1 \longrightarrow Loc \times V$$

(Loc, V)-array is a set M(1) = A together with functions

$$\begin{array}{l} \textit{sel}: \textit{A} \times \textit{Loc} \longrightarrow \textit{A} \times \textit{V} \\ \textit{upd}: \textit{A} \times \textit{Loc} \times \textit{V} \longrightarrow \textit{A} \end{array}$$

$$sel : A \times Loc \longrightarrow V$$
$$upd : A \times Loc \times V \longrightarrow A$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

Comodel for Global State

$$I: V \longrightarrow Loc$$
$$u: 1 \longrightarrow Loc \times V$$

(Loc, V)-array is a set M(1) = A together with functions

$$sel : A \times Loc \longrightarrow A \times V$$
$$upd : A \times Loc \times V \longrightarrow A$$

$$\begin{array}{c} \textit{sel} : \textit{A} \times \textit{Loc} \longrightarrow \textit{V} \\ \textit{upd} : \textit{A} \times \textit{Loc} \times \textit{V} \longrightarrow \textit{A} \end{array}$$

< ロ > < 同 > < 回 > < 回 > < □ > <

3

Axiomatics of Arrays

$$sel(upd(a, loc, v), loc) = v$$

with $\delta_{Loc} : Loc \longrightarrow Loc \times Loc$

< □ > < 同 > < 回 > < 回 > < 回 >

Axiomatics of Arrays

$$upd(a, loc, sel(a, loc)) = a$$

with diagonal $\delta_{A \times Loc} : A \times Loc \longrightarrow A \times Loc \times A \times Loc$

Axiomatics of Arrays

upd(upd(a, loc, v), loc, v') = upd(a, loc, v')

upd(upd(a, loc, v), loc', v') = upd(upd(a, loc', v'), loc, v), where loc \neq loc'

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ()

Axiomatics of Arrays

upd(upd(a, loc, v), loc, v') = upd(a, loc, v')

upd(upd(a, loc, v), loc', v') = upd(upd(a, loc', v'), loc, v),where $loc \neq loc'$

Motivation	Arrays: a comodel for Global State
ur Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Array Morphisms

A map of arrays from (A, sel, upd) to (A', sel', upd'): $h: A \rightarrow A'$.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Motivation	Arrays: a comodel for Global State
ur Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

-20

Array Morphisms

We have a category (*Loc*, *V*)-*Array*

Motivation	Arrays: a comodel for Global State
ur Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Array Morphisms

We have a category (Loc, V)-Array

lotivation	Arrays: a comodel for Global State
r Results	The Category of Arrays is equivalent to Set
nclusions	The Category of Arrays is comonadic over Set

- Arrays: a Memory Model for Computations with Side Effects
- Previous Works

2 Our Results

- Arrays: a comodel for Global State
- The Category of Arrays is equivalent to Set
- The Category of Arrays is comonadic over Set

ヘロン 人間と 人間と 人間と

3

From Set to (Loc, V) - Array

The Functor

$$\begin{array}{l} \textbf{Set} \longrightarrow (\textit{Loc},\textit{V}) - \textit{Array} \\ R \mapsto \textit{V}^{\textit{Loc}} \times \textit{R} \end{array}$$

with the structure maps

$$sel((v_1, ..., v_n, r), loc) := v_{loc}$$
$$upd((v_1, ..., v_n, r), loc, v) := (v_1, ..., v_{loc-1}, v, v_{loc+1} ..., r)$$

is an equivalence of categories.

< □ > < 同 > < 回 > < 回 > < 回 >

From Set to (Loc, V) - Array

The Functor

$$egin{aligned} \mathsf{Set} \longrightarrow (\mathit{Loc}, \mathit{V}) - \mathit{Array} \ \mathit{R} \mapsto \mathit{V}^{\mathit{Loc}} imes \mathit{R} \end{aligned}$$

with the structure maps

$$sel((v_1, ..., v_n, r), loc) := v_{loc}$$
$$upd((v_1, ..., v_n, r), loc, v) := (v_1, ..., v_{loc-1}, v, v_{loc+1} ..., r)$$

is an equivalence of categories.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

From (Loc, V) - Array to **Set**

The pseudoinverse:

$$(Loc, V) - Array \longrightarrow \mathbf{Set}$$

 $(A, sel, upd) \mapsto R_A := A/\theta$

 θ is the relation of the final reachability: $a \approx_{\theta} b$ iff $b = upd_{l_k} (upd_{l_{k-1}}(\dots a \dots), v_{l_k})$ Isomorphism $\varphi : (A, sel, upd) \rightarrow (V^{Loc} \times R_A, sel', upd')$?

$$\varphi: a \mapsto (sel_1(a), \ldots, sel_n(a), [a]_{\theta})$$

・ロト ・雪 ト ・ ヨ ト ・ ヨ

From (Loc, V) - Array to **Set**

The pseudoinverse:

$$(Loc, V) - Array \longrightarrow \mathbf{Set}$$

 $(A, sel, upd) \mapsto R_A := A/\theta$

 θ is the relation of the final reachability: $a \approx_{\theta} b$ iff $b = upd_{I_k} (upd_{I_{k-1}}(\dots a \dots), v_{I_k})$ Isomorphism $\varphi : (A, sel, upd) \rightarrow (V^{Loc} \times R_A, sel', upd')$?

$$\varphi$$
: $a \mapsto (sel_1(a), \ldots, sel_n(a), [a]_{\theta})$

・ロン・雪と・雪と・ ヨン・

From (Loc, V) - Array to **Set**

The pseudoinverse:

$$(Loc, V) - Array \longrightarrow \mathbf{Set}$$

 $(A, sel, upd) \mapsto R_A := A/\theta$

 θ is the relation of the final reachability: $a \approx_{\theta} b$ iff $b = upd_{I_k} (upd_{I_{k-1}}(\dots a \dots), v_{I_k})$ Isomorphism $\varphi : (A, sel, upd) \rightarrow (V^{Loc} \times R_A, sel', upd')$?

$$\varphi: \mathbf{a} \mapsto (\mathsf{sel}_1(\mathbf{a}), \ldots, \mathsf{sel}_n(\mathbf{a}), [\mathbf{a}]_{\theta})$$

Motivation	Arrays: a comodel for Global State
our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

- Arrays: a Memory Model for Computations with Side Effects
- Previous Works

Our Results

- Arrays: a comodel for Global State
- The Category of Arrays is equivalent to Set
- The Category of Arrays is comonadic over Set

Motivation	Arrays: a comodel for Global State
Our Results	The Category of Arrays is equivalent to Set
Conclusions	The Category of Arrays is comonadic over Set

Comonadicity

$$egin{aligned} G(X) &= V^{Loc} imes X^{V^{Loc}} \ T(-) &:= V^{Loc} imes (-)^{V^{Loc}} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Motivation	Arrays: a comodel for Global State
Our Results	The Category of Arrays is equivalent to Set
Conclusions	The Category of Arrays is comonadic over Set

Comonadicity

The Eilenberg-Moore comparison Functor Φ : (*A*, sel, upd) \mapsto (*A*, $U\eta_{(A, sel, upd)}$), $\eta_{(A, sel, upd)}$: (*A*, sel, upd) \rightarrow ($V^{Loc} \times A^{V^{Loc}}$, sel', upd')

$$U\eta_{(A, sel, upd)} : A \to V^{Loc} \times A^{V^{Loc}}$$

$$\eta_{(A, sel, upd)} : a \mapsto \left(\overline{sel}(a), \overline{upd}(a, -)\right), \text{ where}$$

$$\overline{sel}(a) = \left(sel_1(a), \dots, sel_n(a)\right)$$

$$\overline{upd}\left(a, (v_1, \dots, v_n)\right) = upd_n\left(upd_{n-1}(\dots a \dots), v_n\right)$$

3

Motivation	Arrays: a comodel for Global State
Our Results	The Category of Arrays is equivalent to Set
Conclusions	The Category of Arrays is comonadic over Set

Comonadicity

The Eilenberg-Moore comparison Functor Φ : (*A*, sel, upd) \mapsto (*A*, $U\eta_{(A, sel, upd)}$), $\eta_{(A, sel, upd)}$: (*A*, sel, upd) \rightarrow ($V^{Loc} \times A^{V^{Loc}}$, sel', upd')

$$U\eta_{(A, sel, upd)} : A \to V^{Loc} \times A^{V^{Loc}}$$

$$\eta_{(A, sel, upd)} : a \mapsto \left(\overline{sel}(a), \overline{upd}(a, -)\right), \text{ where}$$

$$\overline{sel}(a) = \left(sel_1(a), \ldots, sel_n(a)\right)$$

$$\overline{upd}\left(a, (v_1, \ldots, v_n)\right) = upd_n\left(upd_{n-1}(\ldots a\ldots), v_n\right)$$

3

< ロ > < 同 > < 回 > < 回 > .

Motivation	Arrays: a comodel for Global State
our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Aim: to model new operation

P&P approach – a **block** for **new** – might look a bit artificial.

To model C-like allocation/deallocation use

- arrays with countable Loc,
- \perp to present a fresh cell.

Alternatives

- Use (⊥ + V)^ω as a "canonic model", note: (0 1 ...⊥ ... 1 1 1 ...) is possible,
- Use $(\bot + V)^* \bot^{\omega}$ as a "canonic model".

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Motivation	Arrays: a comodel for Global State
our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Aim: to model new operation

P&P approach – a **block** for **new** – might look a bit artificial. To model C-like allocation/deallocation use

- arrays with countable Loc,
- \perp to present a fresh cell.

Alternatives

- Use (⊥ + V)^ω as a "canonic model", note: (0 1 ...⊥ ... 1 1 1 ...) is possible,
- Use $(\bot + V)^* \bot^{\omega}$ as a "canonic model".

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Motivation	Arrays: a comodel for Global State
our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Aim: to model new operation

P&P approach – a **block** for **new** – might look a bit artificial. To model C-like allocation/deallocation use

- arrays with countable Loc,
- \perp to present a fresh cell.

Alternatives

- Use (⊥ + V)^ω as a "canonic model", note: (0 1 ...⊥ ... 1 1 1 ...) is possible,
- Use $(\bot + V)^* \bot^{\omega}$ as a "canonic model".

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Motivation	Arrays: a comodel for Global State
our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Aim: to model new operation

P&P approach – a **block** for **new** – might look a bit artificial. To model C-like allocation/deallocation use

- arrays with countable Loc,
- \perp to present a fresh cell.

Alternatives

 Use (⊥ + V)^ω as a "canonic model", note: (0 1 ... ⊥ ... 1 1 1 ...) is possible,

• Use $(\bot + V)^* \bot^{\omega}$ as a "canonic model".

Motivation	Arrays: a comodel for Global State
our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Aim: to model new operation

P&P approach – a **block** for **new** – might look a bit artificial. To model C-like allocation/deallocation use

- arrays with countable Loc,
- \perp to present a fresh cell.

Alternatives

- Use (⊥ + V)^ω as a "canonic model", note: (0 1 ...⊥ ... 1 1 1 ...) is possible,
- Use $(\bot + V)^* \bot^{\omega}$ as a "canonic model".

Motivation	Arrays: a comodel for Global State
Our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Status of the research

- Proven: the (Loc, V) Arrays with countable Loc is equivalent to Set/F, where F is the Frechet-filtered product,
- Conjecture: the (Loc, V) Arrays is comonadic over Set/F, the comonad is boring.

< 同 > < 三 > <

3) J

Motivation	Arrays: a comodel for Global State
Our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Status of the research

- Proven: the (Loc, V) Arrays with countable Loc is equivalent to Set/F, where F is the Frechet-filtered product,
- Conjecture: the (Loc, V) Arrays is comonadic over Set/F, the comonad is boring.

▲ 伊 ▶ ▲ 三 ▶ ▲

3) J

Motivation	Arrays: a comodel for Global State
Our Results	The Category of Arrays is equivalent to Set
onclusions	The Category of Arrays is comonadic over Set

Status of the research

- Proven: the (Loc, V) Arrays with countable Loc is equivalent to Set/F, where F is the Frechet-filtered product,
- Conjecture: the (Loc, V) Arrays is comonadic over Set/F, the comonad is boring.

▲ 伊 ▶ ▲ 三 ▶ ▲

(Loc, V) – Arrays is a category of comodels for the theory of Global State.

• (*Loc*, *V*) – *Arrays* is equivalent to **Set** and comonadic over it.

Future Work

- Choose a good alternative for countable arrays to model the effect of **new**.
- Find equational axiomatics for **new**.

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

- (Loc, V) Arrays is a category of comodels for the theory of Global State.
- (*Loc*, *V*) *Arrays* is equivalent to **Set** and comonadic over it.

Future Work

- Choose a good alternative for countable arrays to model the effect of new.
- Find equational axiomatics for **new**.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

- (Loc, V) Arrays is a category of comodels for the theory of Global State.
- (Loc, V) Arrays is equivalent to Set and comonadic over it.
- Future Work
 - Choose a good alternative for countable arrays to model the effect of **new**.
 - Find equational axiomatics for **new**.

(日)

3) J

- (Loc, V) Arrays is a category of comodels for the theory of Global State.
- (Loc, V) Arrays is equivalent to Set and comonadic over it.
- Future Work
 - Choose a good alternative for countable arrays to model the effect of **new**.
 - Find equational axiomatics for **new**.

(日)

3) J