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MOTIVATION

• Reasoning about low-level code is important in the context of proof-carrying
code (PCC), where proofs must be produced for compiled code to avoid the
need to trust a compiler.

• This is considered to be unavoidably clumsy as low-level code is believed to
be inherently non-modular: in particular, it is believed that there cannot be
compositional logics for low-level languages.
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THIS TALK

• We present a compositional natural semantics and a matching Hoare logic for
a basic low-level language.

• This is based on two ideas:

– Pieces of low-level code have an inherent partial commutative monoidal
structure given by finite unions of pieces of code with non-overlapping
supports. Despite its ambiguity, it makes a perfect phrase structure.

– Differently from statements of a high-level language, pieces of low-level
code are multiple-entry and multiple-exit.

• The logic supports compilation of proofs alongside programs.

• Ando: An extension for a stack-based low-level language and on type systems.
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OUTLINE

• Syntax, natural semantics and Hoare logic of WHILE, a basic high-level
language

• Syntax, natural semantics and Hoare logic of SGOTO, a structured version of a
basic low-level language GOTO

• Compilation from WHILE to SGOTO

• Compilation from SGOTO to WHILE
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SYNTAX OF WHILE

• There is a supply of program variables x ∈ Var.

• Arithmetic expressions a ∈ AExp, boolean expressions b ∈ BExp and
statements s ∈ Stm are defined by the grammar

a ::= x | n | a0 + a1 | . . .

b ::= a0 = a1 | . . . | tt | ff | ¬b | . . .

s ::= x := a | skip | s0; s1 | if b then s0 else s1 | while b do s
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NATURAL SEMANTICS OF WHILE

• States σ ∈ State are stores, i.e., mappings of program variables to integers:
State =df Store =df Var → Z.

• Natural semantics rules:

σ ¨x := a¢σ[x 7→ JaKσ]
:=ns

σ ¨skip¢σ
skipns

σ ¨s0¢σ′′ σ′′ ¨s1¢σ′

σ ¨s0; s1¢σ′

compns

σ |= b σ ¨st¢σ′

σ ¨if b then st else sf¢σ′
ifttns

σ 6|= b σ ¨sf¢σ′

σ ¨if b then st else sf¢σ′
ifffns

σ |= b σ ¨s¢σ′′ σ′′ ¨while b do s¢σ′

σ ¨while b do s¢σ′
whilett

ns

σ 6|= b

σ ¨while b do s¢σ
whileff

ns
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HOARE LOGIC OF WHILE

• Assertions P ∈ Assn are logic formulae over the signature of arithmetic
extended with the program variables x ∈ Var as constants.

• Hoare rules:

{Q[x 7→ a]}x := a {Q}
:=hoa

{P} skip {P}
skiphoa

{P} s0 {R} {R} s1 {Q}

{P} s0; s1 {Q}
comphoa

{b ∧ P} st {Q} {¬b ∧ P} sf {Q}

{P} if b then st else sf {Q}
ifhoa

{b ∧ P} s {P}

{P}while b do s {¬b ∧ P}
whilehoa

P |= P ′ {P ′} s {Q′} Q′ |= Q

{P} s {Q}
conseqhoa
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• Theorem (Soundness) If {P} s {Q}, then, for any σ, σ′ and α, σ |=α P and
σ ¨s¢σ′ imply σ′ |=α Q.

• The weakest liberal precondition of a statement: wlp(s, Q) is some assertion P

such that σ |=α P for a state σ and valuation α iff σ ¨s¢σ′ implies σ′ |=α Q for
any state σ′.

• Lemma {wlp(s, Q)} s {Q}.

• Theorem (Completeness) If, for any σ, σ′ and α, σ |=α P and σ ¨s¢σ′ imply
σ′ |=α Q, then {P} s {Q}.
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SYNTAX OF GOTO

• Labels ` ∈ Label are natural numbers: Label =df N.

• Instructions instr ∈ Instr are defined by the grammar

instr ::= x := a | goto ` | ifnot b goto `

• Labelled instructions (`, instr) ∈ LInstr are pairs of labels and instructions:
LInstr =df Label × Instr.

• A piece of code c ∈ Code is a finite set of labelled instructions:
Code = Pfin(LInstr).

• The domain of a piece of code: dom(c) =df {` | (`, instr) ∈ c}.

• Wellformedness of a piece of code: c is wellformed iff (`, instr) ∈ c and
(`, instr ′) ∈ c imply instr = instr ′.
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SEMANTICS OF GOTO

• States (`, σ) ∈ State are pairs of a label (a value for the pc) and a store (values
for the program variables): State =df Label × Store.

• Single-step reduction is defined by the rules
(`, x := a) ∈ c

c ` (`, σ)³ (` + 1, σ[x 7→ JaKσ])
:=

(`, goto m) ∈ c

c ` (`, σ)³ (m, σ)
goto

(`, ifnot b goto m) ∈ c σ |= b

c ` (`, σ)³ (` + 1, σ)
ifngotott

(`, ifnot b goto m) ∈ c σ 6|= b

c ` (`, σ)³ (m, σ)
ifngotoff

Multi-step reduction is the reflexive-transitive closure.
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SYNTAX OF SGOTO

• Labels ` ∈ Label are natural numbers: Label =df N.

• Instructions instr ∈ Instr and pieces of structured code sc ∈ SCode are
defined by the grammar

instr ::= x := a | goto ` | ifnot b goto `

sc ::= (`, instr) | 0 | sc0 ⊕ sc1

• The domain of a piece of code: dom((`, instr)) = {`}, dom(0) = ∅, and
dom(sc0 ⊕ sc1) = dom(sc0) ∪ dom(sc1).

• Wellformedness of a piece of code: (`, instr) is wellformed, 0 is wellformed,
and sc0 ⊕ sc1 is wellformed iff both sc0, and sc1 are wellformed and
dom(sc0) ∩ dom(sc1) = ∅.

• Forgetful function U ∈ SCode → Code: U((`, instr)) = {(`, instr)}, U(0) = ∅,
U(sc0 ⊕ sc1) = U(sc0) ∪ U(sc1).
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NATURAL SEMANTICS OF SGOTO

• States (`, σ) ∈ State are pairs of a pc value and a store
State =df Label × Store.

• Natural semantics rules:

(`, σ)¨(`, x := a)¢ (` + 1, σ[x 7→ JaKσ])
:=ns

m 6= `

(`, σ)¨(`, goto m)¢ (m, σ)
gotons

σ |= b

(`, σ)¨(`, ifnot b goto m)¢ (` + 1, σ)
ifngotott

ns

σ 6|= b m 6= `

(`, σ)¨(`, ifnot b goto m)¢ (m, σ)
ifngotoff

ns
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` ∈ dom(sc0) (`, σ)¨sc0¢ (`′, σ′) (`′, σ′)¨sc0 ⊕ sc1¢ (`′′, σ′′)

(`, σ)¨sc0 ⊕ sc1¢ (`′′, σ′′)
⊕0

ns

` ∈ dom(sc1) (`, σ)¨sc1¢ (`′, σ′) (`′, σ′)¨sc0 ⊕ sc1¢ (`′′, σ′′)

(`, σ)¨sc0 ⊕ sc1¢ (`′′, σ′′)
⊕1

ns

` /∈ dom(sc)

(`, σ)¨sc¢ (`, σ)
oodns

• Lemma (Postlabels) If (`, σ)¨sc¢ (`′, σ′), then `′ /∈ dom(sc).

• Theorem (Preservation of evaluations as stuck reduction sequences)
If (`, σ)¨sc¢ (`′, σ′), then U(sc) ` (`, σ)³∗ (`′, σ′) 6³.

• Theorem (Reflection of stuck reduction sequences as evaluations)
If U(sc) ` (`0, σ0)³

k (`k, σk) 6³, then (`0, σ0)¨sc¢ (`k, σk).
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• Theorem (Neutrality wrt chosen phrase structure)
If U(sc0) = U(sc1), then sc0

∼= sc1

(meaning that (`, σ)¨sc0¢ (`′, σ′) iff (`, σ)¨sc1¢ (`′, σ′) for any states (`, σ),
(`′, σ′)).

• Corollary (Partial commutative monoidal structure)

1. (sc0 ⊕ sc1) ⊕ sc2
∼= sc0 ⊕ (sc1 ⊕ sc2),

2. 0 ⊕ sc ∼= sc ∼= sc ⊕ 0,

3. sc0 ⊕ sc1
∼= sc1 ⊕ sc0.
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HOARE RULES OF SGOTO

• Assertions are logic formulae over the signature of arithmetic extended with a
special symbol pc and program variables x ∈ Var as constants.

• Hoare rules:

{(pc = ` ∧ Q[(pc, x) 7→ (` + 1, a)]) ∨ (pc 6= ` ∧ Q)} (`, x := a) {Q}
:=hoa

{(pc = ` ∧ (Q[pc 7→ m] ∨ m = `)) ∨ (pc 6= ` ∧ Q)} (`, goto m) {Q}
gotohoa
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(pc = ` ∧ ((b ∧ Q[pc 7→ ` + 1])

∨ (¬b ∧ (Q[pc 7→ m] ∨ m = `))))

∨ (pc 6= ` ∧ Q)
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;

(`, ifnot b goto m)
n

Q
o

ifngotohoa
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{P}0 {P}
0hoa

{pc ∈ dom(sc0) ∧ P} sc0 {P} {pc ∈ dom(sc1) ∧ P} sc1 {P}

{P} sc0 ⊕ sc1 {pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ P}
⊕hoa

P |= P ′ {P ′} sc {Q′} Q′ |= Q

{P} sc {Q}
conseqhoa

• Theorem (Soundness) If {P} sc {Q}, then, for any `0, σ0, `′, σ′ and α,
(`0, σ0) |=α P and (`0, σ0)¨sc¢ (`′, σ′) imply (`′, σ′) |=α Q.

• The weakest liberal precondition of a piece of code: wlp(sc, Q) is some
assertion P such that (`, σ) |=α P for a state (`, σ) and valuation α iff
(`, σ)¨sc¢ (`′, σ′) implies (`′, σ′) |=α Q for any state (`′, σ′).

• Lemma {wlp(s, Q)} sc {Q}.

• Theorem (Completeness) If, for any `0, σ0, `′, σ′ and α, (`0, σ0) |=α P and
(`0, σ0)¨sc¢ (`′, σ′) imply (`′, σ′) |=α Q, then {P} sc {Q}.
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COMPILATION FROM WHILE TO SGOTO

• Compilation rules:

x := a `↘`+1 (`, x := a)

skip `↘` 0

s0
`↘`′′ sc0 s1

`′′↘`′ sc1

s0; s1
`↘`′ sc0 ⊕ sc1

st
`+1↘`′′ sct sf

`′′+1↘`′ scf

if b then st else sf
`↘`′ (`, ifnot b goto `′ + 1) ⊕ ((sct ⊕ (`′′, goto `′)) ⊕ scf )

s `+1↘`′′ sc

while b do s `↘`′′+1 (`, ifnot b goto `′′ + 1) ⊕ (sc ⊕ (`′′, goto `))
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• Lemma (Domain of compiled code)
If s `↘`′ sc, then dom(sc) = [`, `′).

• Theorem (Preservation of evaluations)
If s `↘`′ sc and σ ¨s¢σ′, then (`, σ)¨sc¢ (`′, σ′).

• Theorem (Reflection of evaluations)
If s `↘`′ sc and (`, σ)¨sc¢ (`′′, σ′), then `′ = `′′ and σ ¨s¢σ′.

• Theorem (Preservation of derivable Hoare triples)
If s `↘`′ sc and {P} s {Q}, then {pc = ` ∧ P} sc {pc = `′ ∧ Q}.

• Theorem (Reflection of derivable Hoare triples)
If s `↘`′ sc and {P} sc {Q}, then {P [pc 7→ `]} s {Q[pc 7→ `′]}.
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EXAMPLE

• A WHILE program: S =df while x < n do (x := x + 1; s := s ∗ x)

• A proof:

{
x + 1 ≤ n

∧ s ∗ (x + 1) = (x + 1)!
} x := x + 1 {

x ≤ n

∧ s ∗ x = x!
}

{x < n ∧ s = x!} x := x + 1 {x ≤ n ∧ s ∗ x = x!} {x ≤ n ∧ s ∗ x = x!} s := s ∗ x {s = x! ∧ x ≤ n}

{x < n ∧ s = x!} x := x + 1; s := s ∗ x {x ≤ n ∧ s = x!}

{x < n ∧ x ≤ n ∧ s = x!} x := x + 1; s := s ∗ x {x ≤ n ∧ s = x!}

{x ≤ n ∧ s = x!}S {x 6< n ∧ x ≤ n ∧ s = x!}

{x = 0 ∧ s = 1}S {x = n ∧ s = n!}
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• Compiled program:
C =df (1, ifnot x < n goto 5) ⊕ (((2, x := x + 1) ⊕ (3, s := s ∗ x)) ⊕ (4, goto 1))

• Compiled proof:

{J
1′
} 1 {I25}

{pc = 1 ∧ I
1′25

} 1 {I
1′25

}

{J
2′′

} 2 {I3}

{I
2′′

} 2 {I3}

{I
2′
} 2 {I3}

{pc = 2 ∧ I
2′34

} 2 {I
2′34

}

{J3} 3 {I4}

{I3} 3 {I4}

{pc = 3 ∧ I
2′34

} 3 {I
2′34

}

{I
2′34

} 2 ⊕ 3 {pc /∈ [2, 4) ∧ I
2′34

}

{I′

2
} 2 ⊕ 3 {I4}

{I2} 2 ⊕ 3 {I4}

{pc ∈ [2, 4) ∧ I
1′24

} 2 ⊕ 3 {I
1′24

}

{J4} 4 {I
1′
}

{pc = 4 ∧ I
1′24

} 4 {I
1′24

}

{I
1′24

} (2 ⊕ 3) ⊕ 4 {pc /∈ [2, 5) ∧ I
1′24

}

{pc ∈ [2, 5) ∧ I
1′25

} (2 ⊕ 3) ⊕ 4 {I
1′25

}

{I
1′25

}C {pc /∈ [1, 5) ∧ I
1′25

}

{I
1′
}C {I5}

{I1}C {I
5′
}
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where

I1 =df pc = 1 ∧ x = 0 ∧ s = 1 I3 =df pc = 3 ∧ x ≤ n ∧ s ∗ x = x!

I
1′

=df pc = 1 ∧ x ≤ n ∧ s = x! I4 =df pc = 4 ∧ x ≤ n ∧ s = x!

I2 =df pc = 2 ∧ x < n ∧ x ≤ n ∧ s = x! I5 =df pc = 5 ∧ x 6< n ∧ x ≤ n ∧ s = x!

I
2′

=df pc = 2 ∧ x < n ∧ s = x! I
5′

=df pc = 5 ∧ x = n ∧ s = x!

I
2′′

=df pc = 2 ∧ x + 1 ≤ n ∧ s ∗ (x + 1) = (x + 1)!

and

J
1′

=df (pc = 1 ∧ ((x < n ∧ I25[pc 7→ 2]) ∨ (x 6< n ∧ (I25[pc 7→ 5] ∨ 5 = 1))) ∨ (pc 6= 1 ∧ I25)

J
2′′

=df (pc = 2 ∧ I3[(pc, x) 7→ (2, x + 1)]) ∨ (pc 6= 2 ∧ I3)

J3 =df (pc = 3 ∧ I4[(pc, s) 7→ (3, s ∗ x)]) ∨ (pc 6= 3 ∧ I4)

J4 =df (pc = 4 ∧ (I
1′

[pc 7→ 4] ∨ 1 = 4)) ∨ (pc 6= 4 ∧ I
1′

)
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COMPILATION FROM SGOTO TO WHILE

• Rules of compilation from SGOTO to WHILE:

(`, x := a) ↗ if xpc = ` then x := a; xpc := xpc + 1 else skip

(`, goto m) ↗ while xpc = ` do xpc := m

(`, ifnot b goto m) ↗ while xpc = ` do (if b then xpc := ` + 1 else xpc := m)

0 ↗ skip

sc0 ↗ s0 sc1 ↗ s1

sc0 ⊕ sc1 ↗
while xpc ∈ dom(sc0) ∨ xpc ∈ dom(sc1) do

(if xpc ∈ dom(sc0) then s0 else s1)
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• Theorem (Preservation of evaluations)
If sc ↗ s and (`, σ)¨sc¢ (`′, σ′), then σ[xpc 7→ `]¨s¢σ′[xpc 7→ `′].

• Theorem (Reflection of evaluations)
If sc ↗ s and σ ¨s¢σ′, then (σ(xpc), σ[xpc 7→ n])¨sc¢ (σ′(xpc), σ

′[xpc 7→ n]).

• Theorem (Preservation of derivable Hoare triples)
If sc ↗ s and {P} sc {Q}, then {P [pc 7→ xpc ]} s {Q[pc 7→ xpc ]}.

• Theorem (Reflection of derivable Hoare triples)
If sc ↗ s and {P} s {Q}, then {P [xpc 7→ pc]} sc {Q[xpc 7→ pc]}.
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RELATED WORK

• In early days of Hoare logic, considerable attention was paid to structured
high-level languages with general or restricted jumps: conditional Hoare
triples to make use of label invariants (Clint & Hoare, Kowaltowski, de Bruin),
multiple-postcondition Hoare triples to reflect that statements involving gotos
are multiple-exit (Arbib & Alagić).

• Reasoning about unstructured low-level language code has attracted interest
in relation to PCC. Quigley’s work is based on decompilation, Benton’s logic
makes use of global label invariants as the logic of de Bruin.

• Tan and Appel (2005) use finite unions and the idea that low-level code is
multiple-entry, multiple-exit. But their logic is continuation-style and adopts a
non-standard interpretation of Hoare triples via approximations of falsity.
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CONCLUSION

• Nothing beyond the structure given by finite unions is needed to give a
low-level language a compositional natural semantics and Hoare logic with
every desirable property.

• The semantic and logic descriptions so obtained are no more complicated than
the standard ones for high-level languages.

• The logic description supports compilation of proofs alongside programs.

• The structure of finite unions is natural from practical point of view.
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