Compositional Natural Semantics and Hoare Logics
for Low-Level Languages

Tarmo Uustalu

joint work with Ando Saabas

Estonian CS Theory Days, Viinistu, 28-30 Oct. 2005

MOTIVATION .

e Reasoning about low-level code is important in the context of proof-carrying
code (PCC), where proofs must be produced for compiled code to avoid the
need to trust a compiler.

e This is considered to be unavoidably clumsy as low-level code is believed to
be inherently non-modular: in particular, it is believed that there cannot be
compositional logics for low-level languages.

~

THIS TALK .

We present a compositional natural semantics and a matching Hoare logic for
a basic low-level language.
This is based on two ideas:

— Pieces of low-level code have an inherent partial commutative monoidal
structure given by finite unions of pieces of code with non-overlapping
supports. Despite its ambiguity, it makes a perfect phrase structure.

— Differently from statements of a high-level language, pieces of low-level
code are multiple-entry and multiple-exit.

The logic supports compilation of proofs alongside programs.

Ando: An extension for a stack-based low-level language and on type systems.

/

N

OUTLINE '

e Syntax, natural semantics and Hoare logic of WHILE, a basic high-level
language

e Syntax, natural semantics and Hoare logic of SGOTO, a structured version of a
basic low-level language GOTO

e Compilation from WHILE to SGOTO

e Compilation from SGOTO to WHILE

SYNTAX OF WHILE '

e There is a supply of program variables = € Var.

e Arithmetic expressions a € AExp, boolean expressions b € BExp and
statements s € Stm are defined by the grammar
a == x|nl|layg+ail...
b = agzall...‘tt‘ﬂ.’_lb‘...

s == x:=a]lskip|sg;s1|if bthen syelse sy | whilebdo s

/

NATURAL SEMANTICS OF WHILE .

e States o € State are stores, i.e., mappings of program variables to integers:
State —4¢ Store —4¢ Var — Z.

e Natural semantics rules:

o>z :=a—olx— [a]o]

1! 1! /
. o>So— 0 o' >Ss1—0
skip, . COMPy,q

o >skip— o 0 >80; 81— 0
ocEb o>si—o oEb o>spoo’
ifLs iff
. ns .
o >if b then s; else sf— o’ o >if bthen st else sp— o’ ™ ™°

ocEb o>s—o’ o >whilebdo s—o’

1 . tt
: while
o >while b do s— o’ s

oD

o >while b do s— o

while'l,

HOARE LOGIC OF WHILE .

o Assertions P € Assn are logic formulae over the signature of arithmetic
extended with the program variables € Var as constants.

e Hoare rules:

{Qr—d}e=a{Q}
iy PrsolB) (R)si{Q)
{P}skip{P} how {P}s0;51{Q} -
bAPYsi{Q} {-bAP}s;{Q} {bAP}s{P}

Whﬂehoa

{P}if bthen s; else sy {Q} Hhoa {P} while bdo s {-b A P}

PEP {P}s{Q} QEQ
{P}s{Q}

conseqy,,,

Theorem (Soundness) If { P} s {Q}, then, for any ¢, ¢’ and ¢, 0 =, P and
o>s— o’ imply o’ =, Q.

The weakest liberal precondition of a statement: wlp(s, Q) is some assertion P
such that o |=, P for a state o and valuation « iff 0 >»s— ¢’ implies ¢’ |=,, Q for
any state o’.

Lemma {wlp(s,Q)} s{Q@}.

Theorem (Completeness) If, for any o, ¢’ and o, 0 =, P and o >s— ¢’ imply

o' Eo Q, then {P}s{Q}.

N

SYNTAX OF GOTO '

Labels ¢ € Label are natural numbers: Label =4 N.

Instructions instr € Instr are defined by the grammar

instr = x:=a|gotol |ifnotb goto ¢

Labelled instructions (¢, instr) € LInstr are pairs of labels and instructions:
LInstr =4¢ Label x Instr.

A piece of code c € Code is a finite set of labelled instructions:
Code = Pgy, (LInstr).

The domain of a piece of code: dom(c) =q¢ {€ | (¢, instr) € c}.

Wellformedness of a piece of code: ¢ is wellformed iff (¢, instr) € ¢ and
(¢, instr') € cimply instr = instr’.

SEMANTICS OF GOTO .

e States (¢, o) € State are pairs of a label (a value for the pc) and a store (values
for the program variables): State =4¢ Label x Store.

e Single-step reduction is defined by the rules

(l,x:=a)E€c _ (¢,gotom) € ¢ Zoto
ck(l,o0) = (L+1,0lz— [a]o]) ck{,o)—> (m,o)

(4,ifnotbgotom) €c o E=1b
ckW,o0) > ({+1,0)

(4,ifnotbgotom) €c o b
ck(¢,0) = (m,o0)

tt

ifngoto ifngoto'™

Multi-step reduction is the reflexive-transitive closure.

N /

10

SYNTAX OF SGOTO .

Labels ¢ € Label are natural numbers: Label =4 N.

Instructions instr € Instr and pieces of structured code sc € SCode are
defined by the grammar

instr = = a | goto ¢ | ifnot b goto ¢

T
sc = (Lyinstr) | 0| sco @ scq

The domain of a piece of code: dom((¥, instr)) = {¢}, dom(0) = (), and
dom(sco @ sc1) = dom(scg) U dom(scy).

Wellformedness of a piece of code: (¢, instr) is wellformed, 0 is wellformed,

and scg @ scp is wellformed iff both scg, and sc; are wellformed and

dom(scg) Ndom(scy) = 0.

Forgetful function U € SCode — Code: U((¢, instr)) = {(¢, instr)}, U(0) = 0,
Ul(sco @ sc1) = U(sco) UU (scq). /

11

NATURAL SEMANTICS OF SGOTO .

e States (¢, o) € State are pairs of a pc value and a store
State —4¢ Label x Store.

e Natural semantics rules:

(l,o)>(Ul,x :=a)— (L+ 1,0[x — [a]o])

‘=ns

m # £
goto,
(4,0)>(£, goto m)— (m, o)
ocE=b

f tt

(£,0)>(£,ifnot b gotom)— (£ + 1,0) ifngoto,,,
oEb m#£L
- a ifngoto'

(4, 0)>(£,ifnot b goto m)— (m, o)

12

¢ € dom(sco) (£,0)>sco— (£',0") (£',0")>sco ® sc1— (£, 0")

(£,0)>sco ® sc1— (£",0")

a0
¢ € dom(sci) (£,0)>sci— (',0") (£',0")>sco® sci— (£, 0")
(£,0)>sco ® sc1— (£, 0")

¢ ¢ dom(sc)
(4,0)>sc— (£, 0)

1
Dns

o00d s

e Lemma (Postlabels) If (¢,0) >»sc— (¢/,0’), then ¢/ ¢ dom(sc).

e Theorem (Preservation of evaluations as stuck reduction sequences)
If (¢,0)>sc—({',0"),thenU(sc) - (£,0) =»* ({',0") /.

e Theorem (Reflection of stuck reduction sequences as evaluations)
If U(sc) & (Lo, 00) = (Ug,01) #, then (by, 0¢) »sc— Ly, o).

N

13

e Theorem (Neutrality wrt chosen phrase structure)
If U(sco) = U(scy), then sco =2 scq

(meaning that (¢, o) »sco— (¢, 0’) iff (¢,0) >sc1— (¢',0’) for any states (¢,),
(¢, 0")).
e Corollary (Partial commutative monoidal structure)
1. (sco @ sc1) @ sco = sco @ (sc1 P sca),
2. 0D sc = sc=sc®0,

3. sco P sc1 = scq D scy.

14

HOARE RULES OF SGOTO .

e Assertions are logic formulae over the signature of arithmetic extended with a

special symbol pc and program variables = € Var as constants.

e Hoare rules:

{(re = 7 Qllpeso) = L)V (pe 2 LA Q) (fiz =) {Q}

hoa

gOtOhoa

{(pc = €A (Qlpc = m]Vm = L))V (pc # LN Q)} (¢, gotom) {Q}

ifngoto,,
(pc =L A ((bAQ[pc — £+ 1])

V (=b A (Qlpe — m] Vv m = £)))) v (£,ifnot b goto m) { 0 }
V (pe# L A Q)

15

(Pro(py

{pc € dom(sco) A P} sco {P} {pc € dom(sc1) A P} sc1{P}
{P} sco @ sc1 {pc & dom(sco) N pc ¢ dom(sc1) A P}
PEP {P}sc{Q} QEQ
{P}sc{Q}
e Theorem (Soundness) If { P} sc {Q}, then, for any ¢, ¢, ¢, o’ and ¢,
(Yo, 00) Ea P and (¢y, 0¢) >sc— (¢, 0") imply (¢',0") a0 Q.

e The weakest liberal precondition of a piece of code: wlp(sc, @) is some
assertion P such that (¢,0) =, P for a state (¢, o) and valuation « iff
(¢,0)»sc— (£, 0") implies (¢, 0") =, Q for any state (¢',0").

e Lemma {wlp(s, @)} sc{Q}.

e Theorem (Completeness) If, for any ¢y, 0o, ¢, o’ and «, (¢y, 0¢) [Fo P and
(bo,00) »sc— (', 0") imply (¢, 0') =a Q, then { P} sc {Q}.

hoa

conseqy,,,

N

16

/

COMPILATION FROM WHILE TO SGOTO '

e Compilation rules:

z:=a" Ny, (l,z:=a)
skip ™\, 0

e//
s0 N\ sco s1° N\ sci

¢
50381 N\ Sco D sci

/7
s TN ser syt TN ey

if b then s; else s7 “\ s (¢, ifnot b goto £’ + 1) @ ((sc: ® (¢, goto V') ® scy)

1
S t+ \g// SC

while b do s “\,,/ 1 (¢, ifnot b goto £ + 1) & (sc & (£, goto 1))

17

Lemma (Domain of compiled code)
If s\, sc, then dom(sc) = [¢, £").

Theorem (Preservation of evaluations)
If s\, sc and o >s— o/, then (¢, 0) >»sc— (¢',0").

Theorem (Reflection of evaluations)
If s\, scand (¢,0) >»sc— ({",0"), then /' = ¢" and o >s— o’.

Theorem (Preservation of derivable Hoare triples)
If s\, sc and {P} s {Q}, then {pc = £ A\ P} sc {pc = ' A Q}.

Theorem (Reflection of derivable Hoare triples)
If s\, sc and {P} sc{Q}, then {P[pc — €]} s {Q[pc — ¢']}.

18

4 N
EXAMPLE .

e A WHILE program: S =g¢ whilex < ndo (z :=z + 1;5:=s*x)

e A proof:

r+1<n r<n

{/\s*(a:+1):(m+1)!}$::$+1{

{r<nAs=zllr:=zc4+1{z<nAsxz=z!} {z<nAsxzx==zxl}s:=sxx{s=z!ANx<n}

{r<nAs=zl}z:=x+4+1;s:=s*xx{xr <nAs=uzxl}
{r<nAhz<nAs=zl}x:=z+1l;s:=sxzx{x <nAs=uzx!}
{r<nAs=zl}S{xLnArz<nAs=uzl}
{r=0As=1}S{x =nAs=n!}

19

/ e Compiled program: \

C =4 (1,ifnot z <ngoto5) ® (((2,x:=x+1)P® (3,s:=s%*x)) D (4,goto 1))
e Compiled proof:

{JQ//}2 {13}
{Iy} 2 {13} m
(I} 2 {13} {Is} 3 {Lu}

{pc=2AN 1534} 2{I5r34} {pc=3N1Ip34}3{Ipr34}
{15343 2@ 3{pc ¢ [2,4) N Ipr34}

{15} 2 @ 3 {14}

{12}2 @3 {14} {Ja} 4 {1/}
{pc € [2,4) N 11154} 2B 3{I1/94} {pc =4 NTyr04}4{11724}
{Jir} 1 {I25} {11724} (2@ 3) ®4{pc & [2,5) NI1r54}
{pc=1A1I95} 1 {11155} {pc €12,5) AN11/95} (2@ 3) ®4{l1/a5}
{11725y C{pc & [1,5) A I1/a5}
{1/} C{Is}
{1} C{Is}

20

where

I =gspc=1ANx=0As=1 Is=gqrpc=3ANzx<nAs*xx=uzx!
Ii/)=qspc=1Nx<nAs=czl Is=gqspc=4Nx<nAs=uc!
Is=gfpc=2Nzx<nANz<nAs=ux! Is=gqspc=bANANxLnAhzx<nAs=czx!

Iy =gqspc=2Nz<nAs=cz! Is) =qgspc=5ANx=nAs=c!

Iy =gqspc=2ANxc+1<nAsx*x(x+1) = (zx+1)!

and

Jyr=ar (pc = 1A ((x <nAlgs[pc— 2])V(x £nA(Il2s[pc— 5] V5=1)))V(pc#1AIz5)
Jorr =af (pc = 2 AN Ig[(pe,x) — (2,2 4+ 1)]) V (pc # 2 A I3)

J3 =ar (pc = 3 A I4[(pc,s) — (3,s*x)]) V (pc # 3 A Iy)

Ja=as (pc =4 N (Iy/[pc—4]V1=4))V (pc#4NI)

21

/

COMPILATION FROM SGOTO TO WHILE .

e Rules of compilation from SGOTO to WHILE:

4,z :=a) /if xpc = Lthen x := a;Tpc := xpe + 1 else skip

(¢,gotom) /" while . = £ do zpc :=m

(£, ifnot b goto m) /" while x,. = £ do (if b then xp. := ¢ + 1 else z,. := m)

0 7 skip
sco /" so sc1 /" s1

while z,. € dom(sco) V zpc € dom(sci) do
sco @ sc1

(if zpc € dom(sco) then s else s1)

22

Theorem (Preservation of evaluations)
If sc /*sand ({,0)>sc— (¢',0"), then o[z, — €] >s—= ' [xpe —]

Theorem (Reflection of evaluations)

If sc /" sand o>s— 0, then (o(xpc), o[xpe — n])>»sc— (0" (xpe), o' [T pe — n]).

Theorem (Preservation of derivable Hoare triples)
If sc /*sand {P} sc{Q}, then {P[pc — z,.]} s {Q[pc — xp]}.

Theorem (Reflection of derivable Hoare triples)
If sc /*sand {P}s{Q}, then {P|x,. — pc]} sc{Q[zp. — pc|}.

23

RELATED WORK .

e In early days of Hoare logic, considerable attention was paid to structured

high-level languages with general or restricted jumps: conditional Hoare
triples to make use of label invariants (Clint & Hoare, Kowaltowski, de Bruin),
multiple-postcondition Hoare triples to reflect that statements involving gotos
are multiple-exit (Arbib & Alagi¢).

e Reasoning about unstructured low-level language code has attracted interest
in relation to PCC. Quigley’s work is based on decompilation, Benton’s logic
makes use of global label invariants as the logic of de Bruin.

e Tan and Appel (2005) use finite unions and the idea that low-level code is
multiple-entry, multiple-exit. But their logic is continuation-style and adopts a
non-standard interpretation of Hoare triples via approximations of falsity.

N /

24

CONCLUSION '

Nothing beyond the structure given by finite unions is needed to give a
low-level language a compositional natural semantics and Hoare logic with
every desirable property.

The semantic and logic descriptions so obtained are no more complicated than
the standard ones for high-level languages.

The logic description supports compilation of proofs alongside programs.

The structure of finite unions is natural from practical point of view.

25

