

The Goblin
Vesal Vojdani

University of Tartu

What is the Goblin?
● General

– A general analysis framework
● O'Caml

– Analyses are written in Objective Caml
– It analyzes C code

● Brogram
– Uhm, well in Estonian bank is written pank

● Linter
– Such as splint

Meet Alice
● She writes compilers
● She knows the semantics

of her language very well
● She can check lots of

things with her compiler
● Because she does lots of

static analysis
● She is happy :)

Introducing Driver Bob
● Bob works on device

drivers
● His code must satisfy

properties that Alice is
unaware of

● Bob does not know how
to write compilers

● He can't check his code
● He is unhappy :(

Fulfilling Customer Needs

How can Alice
please Bob?

Solution: Meta-Compilation!
● In particular

– Coverity Prevent™
– Based on research at $tanford

● In general
– Static Analysis for the millions
– Let Bob specify the analysis

● Meanwhile at Berkeley: CIL
– It is open source
– But industry strength

Alice and Bob finally meet

Alice> You can write compiler extensions
in this cool language MetaL

Bob> How?
Alice> You know Finite State Automata?
Bob> Yeah sort of...
Alice> Good, you're all set.
Bob> OK
Cousot> Is it sound?
Engler> Not important!

Sound or unsound?
● Approach / philosophy

– Bug detection
– Software verification

● Practical analysis result
– As many bugs as possible
– All bugs of type X

● Can we have both???
– As expressive as Engler
– Almost as sound as Cousot

What bugs me about PAG
● Let's start from a sound framework
● PAG is an example of a sound program

analysis framework
● You specify the abstract domain and transfer

functions
● Out comes an efficient analyzer!
● BUT when the primitives are not enough, you

have to program in C

Pluggable domains!
● A very nice idea by Cooprider and Regehr

(cXprop)
● Use a high level language like O'Caml
● Alice specifies the domain interface
● Bob plugs in his domain and there you go
● Except Bob has to write a lot of O'Caml code
● Can we combine the ideas?

– The ease of PAG
– The freedom of Pluggable domains

Remember the 80s?
● Recall Abelson and

Sussman's meta-linguistic
abstraction
– Layers of progressively

domain-specific facilities
– The layers are transparent

● Why do we love the Domain
Specific Languages hosted
by Haskell?
– Because they're still Haskell!

The Goblin DSLs
● Like PAG

– Goblin Domain Definition Language
– Goblin Transfer Function Language

● Towards MetaL
– Goblin Analysis Patterns
– Goblin Analysis Transformers

● If only my development team was as efficient as
my marketing department ...

Goblin Domain Definition Language
● The GDDL is hosted by the O'Caml module

system
● Functors are wonderful (when they work)
● The syntax is very similar to PAG's DATLA
● A simple interval domain can be specified as
Product (Reverse (Lift (Integers)))
 (Lift (Integers))

Goblin Transfer Function Language
● The GTFL is used to specify the effect of C

expressions on the state
● You can analyze all of C (mainly thanks to CIL)

by giving definitions for:
– Assignments
– Simple branches
– Function calls

● The best part:
GTFL is nothing else than O'Caml itself!

Goblin Analysis Patterns
● GAPs create analyses from very simple

definitions
● Like the cXprop functor

– takes an abstract value domain X
– create a conditional X propagation analysis

● Some other common patterns are
– Operation A must always precede B
– All functions that do A must also do B before

returning

Goblin Analysis Transformers
● GATs are functors that combine entire analyses
● The hottest one takes two analyses as input

– Some form of constant propagation,
usually Goblin's built in analysis

– Simple user supplied analysis X on a finite domain
● The result is an as-path-sensitive-as-necessary

X analysis!
● It would be interesting to put Peter & Ilja into

that functor!

Alice and Bob meet again

Alice> You can write user analyses using
this cool framework called the Goblin!

Bob> How?
Alice> Well, it's like Lego!
Bob> Oh, I love Lego.
Alice> Good, you're all set.
Bob> OK, thanks!
Varmo> Does it work?
Vesal> Yes, it will!

Goblin's current features
● Heavy base analysis

– Conditional Constant Propagation with point-to
analysis (intertwined)

– Uses the Trier value domain (good for case
expressions)

– Granular structs and arrays
● Interprocedural multithreaded analysis

– Functional approach
– The Trier approach to multithreading
– Data Race Analyzer

Goblin Implementation

ML Module
Mania

Recursive

Conclusions: Work
● Passed work

– Why don't people program in the While language?
● Present work

– Make things work!
– Make things look good!
– Make the source code look good!

● Future work
– Statistical post-processing seems interesting
– Try some original ideas on the goblin

