
Optimal Scheduling Using Model Checking

Juhan P. Ernits

Institute of Cybernetics / Tallinn Univ. of Technology

CS theory days, Sept 30, Voore

Motivation

� Model checkers are highly optimised search

engines
� Any model checker can produce a witness trace
� It seems feasible to describe an optimisation

problem as a model (a transition system) and use

a model checker to find an answer (the witness

trace)

Model checking

TOOL

System Description A

Requirement F
Yes,

 Prototypes

 Executable Code

 Test sequences

 Schedules

No!

Debugging Information

Model checking LTL

System

Model

Büchi automaton (Asys)

Negation of property

PLTL-formula (¬�)

Normal-form formula

Graph

Generalised Büchi automaton

Büchi automaton (A
¬�

)

Product automaton (Asys � A
¬�

)

State space

Checking emptiness

Yes! No!

Model checker

Optimal Scheduling in Spin

� Optimal scheduling in Spin has been described by

Theo Ruys in [1] (the first part of the talk is based

on his paper)
� We'll have a look at how
� scheduling problems can be specified as Promela

models
� to call internal functions of Spin to do branch and

bound
� We'll also have a (breef) look how such

scheduling can be scaled using bitstate hashing-

based iterated search refinement

The last intro slide

� The operational research community has solved

many of the standard optimisation problems very

efficiently (e.g. the Euclidean travelling salesman)
� Model checking is interesting for optimisation in

cases where one needs to add new constraints and

modifying the highly optimised algorithms is hard

Why Promela?

� A language instead of state machines is useful

because this

does not seem to be very clear. Thus textual

description of systems seems useful too.

Example: Travelling Salesman

� Find the shortest path that passes all towns

Promela 101

� Spin models consist of
� variables

bit visited[3];

int cost;

� processes
active proctype TSP()

{...}

� message channels

(we do not use them in the current example)

Promela 101

� Within a process selection can be impemented in

the following way:

P0: atomic {

 if

 :: !visited[1] -> cost = cost + 7 ;goto P1

 :: !visited[2] -> cost = cost + 9 ; goto P2

 :: !visited[3] -> cost = cost + 2 ; goto P3

 fi ;

}

The Specification

� The property can be specified as

<> higher_cost

where

#define higher_cost (c_expr { now.cost >= best_cost })

� Notice that the property changes during the search!

Extensions to Promela

� c_decl - introduce C types that can be used in the

Promela model
� c_state - add new C variables to the Promela

model.
� c_expr - evaluate a C expression whose return

value can be used int the Promela model
� c_code - add arbitrary C code fragments as

atomic statements
� c_track - include (external memory into the state

vector)

Reachability

� We formulate the coverage criteria as reachability

questions (that can be formulated in terms of , i.e.

“there exists a state where some propositional

property holds”)
� Many interesting properties can be encoded into

reachability problems by means of monitor

automata / monitor processes
� As Gordon said, these are the safety properties

that can be specified in this way

A Simple Example

Can this system reach a state where booleans t1, t2, t3, t4 and t5 are true?

System

Goal/monitor

FOUND

t1==true and t2==true and
t3==true and t4==true and t5==true

L00 L01

L10

i<2

i++,
t1=true

t2=true

t3=true

t5=true

i==1

t4=true

Explicit State Model Checking

� We deal with explicit state model checking
� all control states and data states are represented

explicitly.
� Spin is explicit state; Uppaal is explicit state (except its

representation of time)
� As opposed to symbolic model checking
� where the states are represented by some symbolic

construct, for example BDD-s.

Ways of reducing memory

consumption

� Partial order reduction
� Symmetry reduction
� Lossless state compression
� Collapse compression
� Minimized automaton representation

� Lossy state compression
� bit-state hashing
� hash compaction

Bit-state hashing

� Let us look at how bit state hashing works.
� Instead of a long string representing a state,

store one bit.

hash(100011011011001010101010101001)=addr
bit

Iterated Search Refinement

� Three states can be encoded as 2 bits
� Each boolean is one bit
� Integer i is in range 0 to 3, thus 2 bits.

L00 L01

L10

i<2

i++,
t1=true

t2=true

t3=true

t5=true

i==1

t4=true

Iterated Search Refinement

L00 L01

L10

i<2

i++,
t1=true

t2=true

t3=true

t5=true

i==1

t4=true

Iterated Search Refinement

L00 L01

L10

i<2

i++,
t1=true

t2=true

t3=true

t5=true

i==1

t4=true

Iterated Search Refinement

L00 L01

L10

i<2

i++,
t1=true

t2=true

t3=true

t5=true

i==1

t4=true

Full search tree

Depth first search tree

Breadth First Search Tree

Search Tree mod 10

Depth first Breadth first

Search Tree mod 11

Depth first Breadth first

Search Tree mod 12

Depth first Breadth first

Guiding

� Guiding drives the the model checker in a

direction that is not obviously wasteful
� The smarter the guiding the shorter the sooner

reasonably good solutions are found and thus

search space is pruned

Guided model checking

� There are extended model checkers where it is

possible to guide search using a heuristic variable

or a cost variable. (e.g. Uppaal-Cora in addition to

Spin)
� (similar to priorities in SyncCharts)

� Even in the guided case, the model checker

wants to use far too much memory.
� Using intentionally underdimensioned bit state

table sizes yields interesting results!

Conclusion

� Optimal scheduling problems can be specified

using Promela and how Spin can be used to find a

solution;
� Branch and bound can be implemented in Promela

using calls to internal functions of Spin
� Bitstate hashing based iterated search refinement:
� enables to increase the size of the spec / use

more complicated coverage criteria
� combined with guiding helps to find much shorter

test sequences (than with DFS)

Thank you for your attention!

References

� Theo Ruys. Optimal Scheduling Using Branch

and Bound with SPIN 4.0. SPIN Workshop 2003
� Juhan P. Ernits, Andres Kull, Kullo Raiend and

Jüri Vain. Generating Tests from EFSM Models

using Guided Model Checking and Iterated

Search Refinement. Proceedings of

FATES/RV'06

