
Attribute Semantics of Declarative Languages

Pavel Grigorenko

Institute of Cybernetics
Tallinn University of Technology

Voore Theory Days
29 September 2006

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 1 / 20

Outline

1 Attribute models

2 Evaluation of attributes

3 Higher-order attribute models

4 Evaluation of higher-order attributes

5 Languages

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 2 / 20

Introduction

Declarative languages do not define a solution, they describe a problem

Declarative specifications can describe single programs as well as
artifacts

A program can be obtained from a specification and a goal

The meaning of a specification is a set of programs

Implementation of this kind of semantics requires automation of program
generation.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 3 / 20

Introduction

Declarative languages do not define a solution, they describe a problem

Declarative specifications can describe single programs as well as
artifacts

A program can be obtained from a specification and a goal

The meaning of a specification is a set of programs

Implementation of this kind of semantics requires automation of program
generation.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 3 / 20

Introduction

Declarative languages do not define a solution, they describe a problem

Declarative specifications can describe single programs as well as
artifacts

A program can be obtained from a specification and a goal

The meaning of a specification is a set of programs

Implementation of this kind of semantics requires automation of program
generation.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 3 / 20

Introduction

Declarative languages do not define a solution, they describe a problem

Declarative specifications can describe single programs as well as
artifacts

A program can be obtained from a specification and a goal

The meaning of a specification is a set of programs

Implementation of this kind of semantics requires automation of program
generation.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 3 / 20

Introduction

Declarative languages do not define a solution, they describe a problem

Declarative specifications can describe single programs as well as
artifacts

A program can be obtained from a specification and a goal

The meaning of a specification is a set of programs

Implementation of this kind of semantics requires automation of program
generation.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 3 / 20

Attribute semantics – basic definitions

Attribute
Attribute is a variable with type

Functional dependency

(y1, ...,yn) = f (x1, ...,xm)

x1, ...,xm → y1, ...,yn{f}

Attribute dependency
Attribute dependency is a relation between attributes that is represented by
one or several functional dependencies whose inputs and outputs are
attributes bound by this relation

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 4 / 20

Attribute semantics – basic definitions

Attribute
Attribute is a variable with type

Functional dependency

(y1, ...,yn) = f (x1, ...,xm)

x1, ...,xm → y1, ...,yn{f}

Attribute dependency
Attribute dependency is a relation between attributes that is represented by
one or several functional dependencies whose inputs and outputs are
attributes bound by this relation

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 4 / 20

Attribute semantics – basic definitions

Attribute
Attribute is a variable with type

Functional dependency

(y1, ...,yn) = f (x1, ...,xm)

x1, ...,xm → y1, ...,yn{f}

Attribute dependency
Attribute dependency is a relation between attributes that is represented by
one or several functional dependencies whose inputs and outputs are
attributes bound by this relation

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 4 / 20

Attribute dependencies

Example
Equality:
x = y can be rewritten as x → y ; y → x

Structural relation:
x = (x1, ...,xm) can be presented as x1, ...,xm → x ; x → x1, ...,xm

Equation:
x = y + z can be presented as a collection of functional dependencies, in
the given example as y ,z → x ; x ,y → z; x ,z → y

Preprogrammed procedure:
with attributes x1, ...,xm as parameters producing a value of attribute y
can be presented as x1, ...,xm → y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 5 / 20

Attribute dependencies

Example
Equality:
x = y can be rewritten as x → y ; y → x

Structural relation:
x = (x1, ...,xm) can be presented as x1, ...,xm → x ; x → x1, ...,xm

Equation:
x = y + z can be presented as a collection of functional dependencies, in
the given example as y ,z → x ; x ,y → z; x ,z → y

Preprogrammed procedure:
with attributes x1, ...,xm as parameters producing a value of attribute y
can be presented as x1, ...,xm → y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 5 / 20

Attribute dependencies

Example
Equality:
x = y can be rewritten as x → y ; y → x

Structural relation:
x = (x1, ...,xm) can be presented as x1, ...,xm → x ; x → x1, ...,xm

Equation:
x = y + z can be presented as a collection of functional dependencies, in
the given example as y ,z → x ; x ,y → z; x ,z → y

Preprogrammed procedure:
with attributes x1, ...,xm as parameters producing a value of attribute y
can be presented as x1, ...,xm → y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 5 / 20

Attribute dependencies

Example
Equality:
x = y can be rewritten as x → y ; y → x

Structural relation:
x = (x1, ...,xm) can be presented as x1, ...,xm → x ; x → x1, ...,xm

Equation:
x = y + z can be presented as a collection of functional dependencies, in
the given example as y ,z → x ; x ,y → z; x ,z → y

Preprogrammed procedure:
with attributes x1, ...,xm as parameters producing a value of attribute y
can be presented as x1, ...,xm → y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 5 / 20

Attribute models

Attribute model
An attribute model M is a pair 〈A,R〉, where A is a finite set of attributes and R
is a finite set of attribute dependencies binding these attributes

Composition of attribute models

Attribute models M
′
= 〈A′

,R
′〉 and M

′′
= 〈A′′

,R
′′〉

Set of equalities s = {M
′
.a = M

′′
.b,,M

′
.d = M

′′
.e}

Composition of M
′
and M

′′
: ∪s(M

′
,M

′′
), where A

′ ∪A
′′

and R
′ ∪R

′′ ∪ s

Composition of attribute models: ∪s(M1, ...,Mn)

Composite names
From x , y ∈ m to m.x , m.y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 6 / 20

Attribute models

Attribute model
An attribute model M is a pair 〈A,R〉, where A is a finite set of attributes and R
is a finite set of attribute dependencies binding these attributes

Composition of attribute models

Attribute models M
′
= 〈A′

,R
′〉 and M

′′
= 〈A′′

,R
′′〉

Set of equalities s = {M
′
.a = M

′′
.b,,M

′
.d = M

′′
.e}

Composition of M
′
and M

′′
: ∪s(M

′
,M

′′
), where A

′ ∪A
′′

and R
′ ∪R

′′ ∪ s

Composition of attribute models: ∪s(M1, ...,Mn)

Composite names
From x , y ∈ m to m.x , m.y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 6 / 20

Attribute models

Attribute model
An attribute model M is a pair 〈A,R〉, where A is a finite set of attributes and R
is a finite set of attribute dependencies binding these attributes

Composition of attribute models

Attribute models M
′
= 〈A′

,R
′〉 and M

′′
= 〈A′′

,R
′′〉

Set of equalities s = {M
′
.a = M

′′
.b,,M

′
.d = M

′′
.e}

Composition of M
′
and M

′′
: ∪s(M

′
,M

′′
), where A

′ ∪A
′′

and R
′ ∪R

′′ ∪ s

Composition of attribute models: ∪s(M1, ...,Mn)

Composite names
From x , y ∈ m to m.x , m.y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 6 / 20

Attribute models contd.

Flattened form
Any attribute model can be represented in the flattened form (where each
attribute dependency is a functional dependency). Relations between
attributes are considered as sets of functional dependencies and their union is
the set of attribute dependencies of the attribute model in the flattened form.

Example
Attribute model:
M = 〈{a;b;c;x ;y ;z},{a = b + c;x = (y ,z)}〉
Flattened form:
M

′
= 〈{a;b;c;x ;y ;z},{b,c → a; a,c → b; a,b → c; x → y ,z; y ,z → x}〉

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 7 / 20

Attribute models contd.

Flattened form
Any attribute model can be represented in the flattened form (where each
attribute dependency is a functional dependency). Relations between
attributes are considered as sets of functional dependencies and their union is
the set of attribute dependencies of the attribute model in the flattened form.

Example
Attribute model:
M = 〈{a;b;c;x ;y ;z},{a = b + c;x = (y ,z)}〉
Flattened form:
M

′
= 〈{a;b;c;x ;y ;z},{b,c → a; a,c → b; a,b → c; x → y ,z; y ,z → x}〉

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 7 / 20

Computational problems of attribute models

Computational problem
Let U and V be two sets of attributes of an attribute model M. We call a
pair 〈U,V 〉 a computational problem on the attribute model M, where U is
a set of input attributes and V is a set of output attributes.

Given values of attributes from U find values of attributes of V using
attribute dependencies of M

If for two computational problems 〈U1,V1〉 and 〈U2,V2〉 we have U1 ⊆ U2

and V2 ⊆ V1, and at least one of these inclusions is strict then we say that
the computational problem 〈U1,V1〉 is greater than the computational
problem 〈U2,V2〉.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 8 / 20

Computational problems of attribute models

Computational problem
Let U and V be two sets of attributes of an attribute model M. We call a
pair 〈U,V 〉 a computational problem on the attribute model M, where U is
a set of input attributes and V is a set of output attributes.

Given values of attributes from U find values of attributes of V using
attribute dependencies of M

If for two computational problems 〈U1,V1〉 and 〈U2,V2〉 we have U1 ⊆ U2

and V2 ⊆ V1, and at least one of these inclusions is strict then we say that
the computational problem 〈U1,V1〉 is greater than the computational
problem 〈U2,V2〉.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 8 / 20

Computational problems of attribute models

Computational problem
Let U and V be two sets of attributes of an attribute model M. We call a
pair 〈U,V 〉 a computational problem on the attribute model M, where U is
a set of input attributes and V is a set of output attributes.

Given values of attributes from U find values of attributes of V using
attribute dependencies of M

If for two computational problems 〈U1,V1〉 and 〈U2,V2〉 we have U1 ⊆ U2

and V2 ⊆ V1, and at least one of these inclusions is strict then we say that
the computational problem 〈U1,V1〉 is greater than the computational
problem 〈U2,V2〉.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 8 / 20

Evaluation of attributes

Value propagation
Value propagation is a procedure that for an attribute model M in flattened
form and a set of attributes U that belong to this model decides which
attributes are computable from U and produces a sequence of functional
dependencies that is an algorithm for computing values of these attributes

Example

R = {r = r1+ r2; u = i ∗ r ; u = u2−u1}
U = {u1; u2; i }
R

′
= {r1, r2 → r ; r , r1 → r2; r , r2 → r1; i, r → u; u, i → r ; u, r → i;

u2,u1 → u; u,u2 → u1; u,u1 → u2}
Algorithm:

{u2,u1 → u; } U = {u1; u2; i; u}
{u2,u1 → u; u, i → r ; } U = {u1; u2; i; u; r}

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 9 / 20

Evaluation of attributes

Value propagation
Value propagation is a procedure that for an attribute model M in flattened
form and a set of attributes U that belong to this model decides which
attributes are computable from U and produces a sequence of functional
dependencies that is an algorithm for computing values of these attributes

Example

R = {r = r1+ r2; u = i ∗ r ; u = u2−u1}
U = {u1; u2; i }
R

′
= {r1, r2 → r ; r , r1 → r2; r , r2 → r1; i, r → u; u, i → r ; u, r → i;

u2,u1 → u; u,u2 → u1; u,u1 → u2}
Algorithm:

{u2,u1 → u; } U = {u1; u2; i; u}
{u2,u1 → u; u, i → r ; } U = {u1; u2; i; u; r}

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 9 / 20

Evaluation of attributes

Value propagation
Value propagation is a procedure that for an attribute model M in flattened
form and a set of attributes U that belong to this model decides which
attributes are computable from U and produces a sequence of functional
dependencies that is an algorithm for computing values of these attributes

Example

R = {r = r1+ r2; u = i ∗ r ; u = u2−u1}
U = {u1; u2; i }
R

′
= {r1, r2 → r ; r , r1 → r2; r , r2 → r1; i, r → u; u, i → r ; u, r → i;

u2,u1 → u; u,u2 → u1; u,u1 → u2}
Algorithm:

{u2,u1 → u; } U = {u1; u2; i; u}
{u2,u1 → u; u, i → r ; } U = {u1; u2; i; u; r}

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 9 / 20

Evaluation of attributes

Value propagation
Value propagation is a procedure that for an attribute model M in flattened
form and a set of attributes U that belong to this model decides which
attributes are computable from U and produces a sequence of functional
dependencies that is an algorithm for computing values of these attributes

Example

R = {r = r1+ r2; u = i ∗ r ; u = u2−u1}
U = {u1; u2; i }
R

′
= {r1, r2 → r ; r , r1 → r2; r , r2 → r1; i, r → u; u, i → r ; u, r → i;

u2,u1 → u; u,u2 → u1; u,u1 → u2}
Algorithm:

{u2,u1 → u; } U = {u1; u2; i; u}
{u2,u1 → u; u, i → r ; } U = {u1; u2; i; u; r}

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 9 / 20

Higher-order attribute models

Higher-order functional dependency
A is a set of attributes

P is a set of computational problems

Higher-order functional dependency (hofd) has inputs from A∪P and
outputs from A.

Inputs from P are called subtasks.

Example

(u → v), (s → t), x → y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 10 / 20

Higher-order attribute models

Higher-order functional dependency
A is a set of attributes

P is a set of computational problems

Higher-order functional dependency (hofd) has inputs from A∪P and
outputs from A.

Inputs from P are called subtasks.

Example

(u → v), (s → t), x → y

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 10 / 20

Higher-order functional dependency

...(u → v),x → y ...

]

U
u → y y → v

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 11 / 20

Higher-order functional dependency

Example

z =
x

∑
i=1

y

∑
j=1

ai,j

(i → sum1), x → z
(j → val), y → sum1, where sum1 corresponds to ∑

y
j=1 aj

i, j → val , where val corresponds to ai,j

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 12 / 20

Evaluation of higher-order attributes

Maximal linear branch
Value propagation produces: {F1, . . . ,Fk}
If the problem not solved, add hofd : {F1, . . . ,Fk , R}
Maximal linear branch (mlb) is a sequence of applicable functional
dependencies with one hofd at the end.

A mlb cannot be found and the problem is unsolvable
The constructed mlb reduces the problem to a simpler one

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 13 / 20

And-or search tree

S0

Rα
... Rβ

Sα,1 Sα,m Sβ ,1 Sβ ,n... ...

Rγ Rζ
...

... ...

S
′
α

S
′

β

Ri : Si,1, ...,Si,m,X → Y

Or:

And:

Or:

And:
S0〈U,V 〉 ⇒ F1, . . . ,Fk 〈U ′

,V ′ 〉

Rα 〈U ′
,V ′ 〉 ⇒ 〈U ′′

,V
′′〉

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 14 / 20

Evaluation of higher-order attributes

Result of evaluation
After constructing the mlb the problem is solvable (like in the case of a
single hofd).

A mlb cannot be found and the problem is unsolvable.

A mlb can be found and the initial problem 〈U1,V1〉 is reduced to a
simpler one 〈U2,V2〉, U2 = U1∪Y and V2 = V1\Y , i.e.
〈U2,V2〉< 〈U1,V1〉, where Y is the set of outputs of the hofd.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 15 / 20

Languages

The core language
The core language presents specifications as compositions of typed
components. Each component has an attribute model that represents its
semantic information. Attribute model of a component is determined by its
type.
Statements:

Declaration <type> <identifier>;

Functional dependency (or hofd)

Binding <variable> = <variable>;

Attribute model M of a specification is the composition of attribute models of its
components M

′
= ∪s(M1, . . . ,Mn) extended with attributes a1, . . . ,an declared

by D1, . . . ,Dn and functional dependencies F .
Shallow semantics of the core language transforms specifications into attribute
models.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 16 / 20

Deep semantics of the core language

DS1
The deep semantics DS1 of the core language produces an algorithm for any
solvable computational problem on attribute model of a specification.

DS2
The deep semantics DS2 produces an algorithm for solving the largest
computational problem with an empty set of input attributes.

DS3
The real meaning of a specification can be computed as a value of a
distinguished attribute on the attribute model of a specification.
The deep semantics DS3 computes a value of such attribute for a given
specification.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 17 / 20

Deep semantics of the core language

DS1
The deep semantics DS1 of the core language produces an algorithm for any
solvable computational problem on attribute model of a specification.

DS2
The deep semantics DS2 produces an algorithm for solving the largest
computational problem with an empty set of input attributes.

DS3
The real meaning of a specification can be computed as a value of a
distinguished attribute on the attribute model of a specification.
The deep semantics DS3 computes a value of such attribute for a given
specification.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 17 / 20

Deep semantics of the core language

DS1
The deep semantics DS1 of the core language produces an algorithm for any
solvable computational problem on attribute model of a specification.

DS2
The deep semantics DS2 produces an algorithm for solving the largest
computational problem with an empty set of input attributes.

DS3
The real meaning of a specification can be computed as a value of a
distinguished attribute on the attribute model of a specification.
The deep semantics DS3 computes a value of such attribute for a given
specification.

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 17 / 20

Extensions of the core language

Standard extension
New statements:

Valuation <variable> = <value>;

Alias alias <identifier> = (<variable>,...);

Equation <arithmetic expression> = <arithmetic
expression>;

Visual language for schemes

Names of components and ports

Connecting ports

Assigning values

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 18 / 20

Extensions of the core language

Standard extension
New statements:

Valuation <variable> = <value>;

Alias alias <identifier> = (<variable>,...);

Equation <arithmetic expression> = <arithmetic
expression>;

Visual language for schemes

Names of components and ports

Connecting ports

Assigning values

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 18 / 20

Attribute semantics of specifications

Steps for extracting the meaning of a specification
translation into the core language

translation from the core language into attribute model

attribute evaluation

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 19 / 20

Summary

Introduced a method for representing the semantics of specification
languages by means of attribute models

Presented the technique of dynamic attribute evaluation on simple
attribute models as well as higher-order attribute models

Defined three kinds of deep semantics of specifications

Attribute semantics has been implemented in CoCoViLa
http://www.cs.ioc.ee/ ˜cocovila

Pavel Grigorenko (IOC, TUT) Attribute Semantics of Declarative Languages Voore, 29 September 2006 20 / 20

	Introduction
	Attribute models
	Evaluation of attributes
	Higher-order attribute models
	Evaluation of higher-order attributes
	Languages
	Summary

