
Aranea—Web Framework Construction and Integration Kit

Oleg Mürk
Dept. of Computer Science and Engineering,

Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

oleg.myrk@gmail.com

Jevgeni Kabanov
Dept. of Computer Science,

University of Tartu,
J. Liivi 2, EE-50409 Tartu, Estonia

ekabanov@gmail.com

ABSTRACT
Currently there exist dozens of web controller frameworks
that are incompatible, but at the same time have large por-
tions of overlapping functionality that is implemented over
and over again. Web programmers are facing limitations on
code reuse, application and framework integration, extensi-
bility, expressiveness of programming model and productiv-
ity.

In this paper we propose a minimalistic component model
Aranea that is aimed at constructing and integrating server-
side web controller frameworks in Java. It allows assembling
most of available web programming models out of reusable
components and patterns. We also show how to integrate
different existing frameworks using Aranea as a common
protocol. In its default configuration Aranea supports both
developing sophisticated user interfaces using stateful com-
ponents and nested processes as well as high-performance
stateless components.

We propose to use this model as a platform for frame-
work development, integration and research. This would
allow combining different ideas and avoid reimplementing
the same features repeatedly. An open source implementa-
tion of Aranea framework together with reusable controls,
such as input forms and data lists, and a rendering engine
are ready for real-life applications.

1. INTRODUCTION
During the last 10 years we have witnessed immense ac-

tivity in the area of web framework design. Currently,
there are more than 30 actively developed open source web
frameworks in Java [10], let alone commercial products or
other platforms like .NET and numerous dynamic languages.
Not to mention in-house corporate frameworks that never
saw public light. Many different and incompatible design
philosophies are used, but even within one approach there
are multiple frameworks that have small implementation dif-
ferences and are consequently incompatible with each other.

The advantage of such a situation is that different ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006, August 30–September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM ...$5.00.

proaches and ideas are tried out. Indeed, many very good
ideas have been proposed during these years, many of which
we will describe later in this paper. On a longer time-
scale the stronger (or better marketed) frameworks and ap-
proaches will survive, the weaker will diminish. However, in
our opinion, such situation also has a lot of disadvantages.

1.1 Problem Description
First of all let’s consider the problems of the web frame-

work ecosystem from the viewpoint of application develop-
ment. Framework user population is very fragmented as a
result of having many incompatible frameworks with simi-
lar programming models. Each company or even project, is
using a different web framework, which requires learning a
different skill set. As a result, it is hard to find qualified
work force for a given web framework. For the same reason
it is even harder to reuse previously developed application
code.

Moreover, it is sometimes useful to write different parts
of the same application using different approaches, which
might prove impossible, as the supporting frameworks are
incompatible. Portal solutions that should facilitate in-
tegrating disparate applications provide very limited ways
for components to communicate with each other. Finally,
frameworks are often poorly designed, limiting expressive-
ness, productivity and quality.

System programmers face additional challenges. Creators
of reusable components have to target one particular frame-
work, consequently their market shrinks. Framework de-
signers implement overlapping features over and over again,
with each new feature added to each framework separately.
Many useful ideas cannot be used together because they
have been implemented in different frameworks.

We think that web framework market would win a lot if
there were two or three popular platforms with orthogonal
philosophies that would consolidate proponents of their ap-
proach. Application programmers would not have to learn a
new web framework at the beginning of each project. Writ-
ing reusable components and application integration would
be easier and more rewarding. Framework designers could
try out new ideas much easier by writing extensions to the
platform and targeting a large potential user-base.

1.2 Contributions
In this paper we will describe a component framework

that we named Aranea. Aranea is written in Java and al-
lows assembling server-side controller web frameworks out
of reusable components and patterns. Aranea applications
are pure Java and can be written without any static con-

1

Figure 1: A sketch of a rich user interface.

figuration files. In Section 2 we describe our approach and
motivation. We find that one of the strengths of this frame-
work is its conceptual integrity—it has very few core con-
cepts that are applied uniformly throughout the framework.
The number of core interfaces is small, as is the number of
methods in the interfaces. Components are easy to reuse, ex-
tend and test, because all external dependencies are injected
into them. The details of the Aranea core abstractions are
explained in Section 3.

In different configurations of Aranea components we can
mimic principles and patterns of most existing server-side
web controller frameworks as well as combine them arbitrar-
ily. Possible configurations are described in Section 4. We
concentrate on implementation of server-side controllers, but
we also intend to support programming model where most
of UI is implemented on the client-side and server-side con-
tains only coarse-grained stateful components corresponding
roughly to active use-cases.

Of particular interest is the configuration supporting pro-
gramming model that allows expressing a rich user interface
as a dynamic hierarchical composition of components that
maintain call stacks of nested processes (we refer to such
processes as flows further on). As an example of rich user
interface at extreme, consider Figure 1: multiple interact-
ing windows per user session, each window contains a stack
of flows, flows can call nested flows that after completing
return values, flows can display additional UI (side-menu,
context information) even when a nested flow is executing,
flows can contain tabbed areas, wizards, input forms, lists,
other controls and even other flows.

Further, the framework facilitates both event-based and
sequential programming (using continuations). The pro-
gramming model is quite similar to the one used in the
Smalltalk web framework Seaside [21], but has completely

different implementation and is more general in terms of
where sequential programming can be applied. This topic is
discussed in Section 7.1 as one of extensions.

All web frameworks have to handle such aspects as con-
figuration, security, error handling and concurrency. We
explain how Aranea handles these issues in Section 5.

One of the most important differentiating factors of
Aranea, is in our mind its ability to serve as a vehicle for
integration of existing frameworks due to its orthogonal de-
sign. We discuss this topic in Section 6.

Finally, we see Aranea as a research platform. It it very
easy to try out a new feature without having to write an
entire web framework. A framework is assembled out of
independent reusable components, so essentially everything
can be reconfigured, extended or replaced. If Aranea be-
comes popular, writing a new component for Aranea would
also mean a large potential user base.

Naturally, there are still numerous framework extensions
to be made and further directions to be pursued. These are
described in Section 7. Last, but not least, Aranea is based
on great ideas originating from prior work of many people.
When possible, we reference the original source of idea at
the time of introducing it. In Section 8 we compare Aranea
with some of the existing frameworks.

2. BACKGROUND
As we mentioned in the introduction, our aim is to sup-

port most of programming models and patterns available
in the existing controller frameworks. We present here, un-
avoidably incomplete and subjective, list of profound ideas
used in contemporary web controller frameworks.

The first important alternative is using stateless or reen-
trant components for high performance and low memory
footprint, available in such frameworks as Struts [3] and
WebWork [19].

Another important approach is using hierarchical com-
position of stateful non-reentrant components with event-
based programming model, available in such frameworks as
JSF [8], ASP.NET [4], Seaside [21], Wicket [20], Tapestry
[5]. This model is often used for developing rich UI, but
generally poses higher demands on server’s CPU and mem-
ory.

The next abstraction useful especially for developing rich
UI is nested processes, often referred to as modal processes,
present for instance in such web frameworks as WASH
[26], Cocoon [2], Spring Web Flow [18] and RIFE [14].
They are often referred to by the name of implementation
mechanism—continuations. The original idea comes from
Scheme [25], [22].

All of these continuation frameworks provide one top-level
call-stack—essentially flows are like function calls spanning
multiple web requests. A significant innovation can be found
in framework Seaside [21], where continuations are combined
with component model and call stack can be present at any
level of component hierarchy.

Yet another important model is using asynchronous re-
quests and partial page updates, coined Ajax [1]. This allows
decreasing server-side state representation demands and in-
creases responsiveness of UI. At the extreme, this allows cre-
ating essentially fat client applications with a sophisticated
UI within browser.

We would also like to support different forms of metapro-
gramming such as domain specific language for describing

2

UI as a state machine in Spring Web Flow [18] and domain-
driven design as implemented in Ruby on Rails [16] or
RIFE/Crud [15]. This often requires framework support
for dynamic composition and component run-time configu-
ration.

3. CORE ABSTRACTIONS
Aranea framework is based on the abstraction of compo-

nents arranged in a dynamic hierarchy and two component
subtypes: services that model reentrant controllers and wid-
gets that model non-reentrant stateful controllers. In this
section we examine their interfaces and core implementation
ideas. We omit some non-essential details for brevity.

3.1 Components
At the core of Aranea lies a notion of components arranged

into a dynamic hierarchy that follows the Composite pattern
extended with certain mechanisms for communication. This
abstraction is captured by the following interface:

interface Component {

void init(Environment env);

void enable();

void disable();

void propagate(Message msg);

void destroy();

}

A component is an entity that

• Has a life-cycle that begins with an init() call and
ends with a destroy() call.

• Can be signaled to be disabled and then enabled again.

• Has an Environment that is passed to it by its parent
or creator during initialization.

• Can propagate Messages to its children.

We imply here that a component will have a parent and may
have children. Aranea actually implies that the component
would realize a certain flavor of the Composite pattern that
requires each child to have a unique identifier in relation to
its parent. These identifiers can then be combined to create
a full identifier that allows finding the component starting
from the hierarchy root. Note that the hierarchy is not static
and can be modified at any time by any parent.

The hierarchy we have arranged from our components so
far is inert. To allow some communication between differ-
ent components we need to examine in detail the notions of
Environment and Message.
Environment is captured by the following interface:

interface Environment {GUI abstractions

Object getEntry(Object key);

}

Environment is a discovery mechanism allowing children to
discover services (named contexts) provided by their par-
ents without actually knowing, which parent has provided
it. Looking up a context is done by calling the environment
getEntry() method passing some well-known context name
as the key. By a convention this well-known name is the in-
terface class realized by the context. The following example
illustrates how environment can be used:

L10nContext locCtx = (L10nContext)

getEnvironment().getEntry(L10nContext.class);

String message = locCtx.localize("message.key");

Environment may contain entries added by any of the cur-
rent component ancestors, however the current component
direct parent has complete control over the exact entries
that the current component can discover. It can add new
entries, override old ones as well as remove (or rather filter
out) entries it does not want the child component to access.
This is done by wrapping the grandparent Environment into
a proxy that will allow only specific entries to be looked up
from the grandparent.
Message is captured in the following interface:

interface Message {

void send(Object key, Component comp);

}

While the environment allows communicating with the com-
ponent parents, messages allow communicating with the
component descendants (indirect children). Message is ba-
sically an adaptation of the Visitor pattern to our flavor
of Composite. The idea is that a component propagate(m)

method will just call message m.send(...) method for each
of its children passing the message both their instances and
identifiers. The message can then propagate itself further or
call any other component methods.

It is easy to see that messages allow constructing both
broadcasting (just sending the message to all of the compo-
nents under the current component) and routed messages
that receive a relative “path” from the current component
and route the message to the intended one. The following
example illustrates a component broadcasting some message
to all its descendants (BroadcastMessage will call execute
for all component under current):

Message myEvent = new BroadcastMessage() {

public void execute(Component comp) {

if (comp instanceof MyDataListener)

((MyDataListener) comp).setMyData(data);

}

}

myEvent.send(null, rootComponent);

3.2 Services
Although component hierarchy is a very powerful concept

and messaging is enough to do most of the communication,
it is comfortable to define a specialized component type that
is closer to the Controller pattern. We call this component
Service and it is captured by the following interface:

interface Service extends Component {

void action(

Path path,

InputData input,

OutputData output

);

}

Service is basically an abstraction of a reentrant con-
troller in our hierarchy of components. The InputData

and OutputData are simple generic abstractions over, corre-
spondingly, a request and a response, which allow the con-
troller to process request data and generate the response.
The Path is an abstracted representation of the full path to

3

the service from the root. It allows services to route the
request to the one service it is intended for. Since service is
also a component it can enrich the environment with addi-
tional contexts that can be used by its children.

3.3 Widgets
Although services are very flexible, they are not too com-

fortable for programming stateful non-reentrant components
(GUI abstractions often being such). To do that we intro-
duce the notion of a Widget, which is captured by the fol-
lowing interface:

interface Widget extends Service {

void update(InputData data);

void event(Path path, InputData input);

void process();

void render(OutputData output);

}

Widgets extend services, but unlike them widgets are usu-
ally stateful and are always assumed to be non-reentrant.
The widget methods form a request-response cycle that
should proceed in the following order:

1. update() is called on all the widgets in the hierarchy
allowing them to read data intended for them from the
request.

2. event() call is routed to a single widget in the hierar-
chy using the supplied Path. It allows widgets to react
to specific user events.

3. process() is also called on all the widgets in the hier-
archy allowing them to prepare for rendering whether
or not the widget has received an event.

4. render() calls are not guided by any conventions. If
called, widget should render itself (though it may del-
egate the rendering to e.g. template). The render()

method should be idempotent, as it can be called ar-
bitrary number of times after a process() call before
an update() call.

Although widgets also inherit an action() method, it may
not be called during the widget request-response cycle. The
only time it is allowed is after a process() call, but before
an update() call. It may be used to interact with a single
widget, e.g. for the purposes of making an asynchronous
request through Ajax [1].

Standard widget implementation allows setting event
listeners that enable further discrimination between
action()/event() calls to the same widget.

So far we called our components stateful or non-stateful
without discussing the persistence of this state. A typical
framework would introduce predefined scopes of persistence,
however in Aranea we have very natural scopes for all our
components—their lifetime. In Aranea one can just use the
component object fields and assume that they will persist
until the component is destroyed. If the session router is
used, then the root component under it will live as long as
the user session. This means that in Aranea state manage-
ment is invisible to the programmer, as most components
live as long as they are needed.

3.4 Flows
To support flows (nested processes) we construct a flow

container widget that essentially hosts a stack of widgets
(where only the top widget is active at any time) and en-
riches their environment with the following context:

interface FlowContext {

void start(Widget flow, Handler handler);

void replace(Widget flow);

void finish(Object result);

void cancel();

}

This context is available in standard widget implementation
by calling getFlowCtx(). Its methods are used as follows:

• Flow A running in a flow container can start a nested
flow B by calling start(new B(...), null). The data
passed to the flow B constructor can be thought as
incoming parameters to the nested process. The flow
A then becomes inactive and flow B gets initialized.

• When flow B is finished interacting with the user,
it calls finish(...) passing the return value to the
method. Alternatively flow B can call the cancel()

method if the flow was terminated by user without
completing its task and thus without a return value.
In both cases flow B is destroyed and flow A is reacti-
vated.

• Instead of finishing or canceling, flow B can also replace
itself by a flow C calling replace(new C(...)). In
such a case flow B gets destroyed, flow C gets initialized
and activated, while flow A continues to be inactive.
When flow C will finish flow A will get reactivated.

Handler callback interface is used when the calling flow
needs to somehow react to the called flow finishing or can-
celing:

interface Handler {

void onFinish(Object returnValue);

void onCancel();

}

It is possible to use continuations to realize synchronous
(blocking) semantics of flow invocation, as shown in the sec-
tion 7, in which case the Handler interface is redundant.

4. FRAMEWORK ASSEMBLY
Now that we are familiar with the core abstractions we

can examine how the actual web framework is assembled.
First of all it is comfortable to enumerate the component
types that repeatedly occur in the framework:

Filter A component that contains one child and chooses
depending on the request parameters whether to route
calls to it or not.

Router A component that contains many children, but
routes calls to only one of them depending on the re-
quest parameters.

Broadcaster A component that has many children and
routes calls to all of them.

4

Adapter A component that translates calls from one pro-
tocol to another (e.g. from service to a widget or from
Servlet [6] to a service).

Container A component that allows some type of children
to function by enabling some particular protocol or
functionality.

Of course of all of these component types also enrich the
environment and send messages when needed.

Aranea framework is nothing, but a hierarchy (often look-
ing like a chain) of components fulfilling independent tasks.
There is no predefined way of assembling it. Instead we show
how to assemble frameworks that can host a flat names-
pace of reentrant controllers (á la Struts [3] actions), a flat
namespace of non-reentrant stateful controllers (á la JSF
[8] components) and nested stateful flows (á la Spring Web
Flow [18]). Finally we also consider how to merge all these
approaches in one assembly.

4.1 Reentrant Controllers
The first model is easy to implement by arranging the

framework in a chain by containment (similar to pattern
Chain-of-Responsibility), which starting from the root looks
as follows:

1. Servlet [6] adapter component that translates the
servlet doPost() and doGet() to Aranea service
action() calls.

2. HTTP filter service that sets the correct headers (in-
cluding caching) and character encoding. Generally
this step consists of a chain of multiple filters.

3. URL path router service that routes the request to one
of the child services using the URL path after servlet.
One path will be marked as default.

4. A number of custom application services, each regis-
tered under a specific URL to the URL path router
service that correspond to the reentrant controllers.
We call these services actions.

The idea is that the first component object actually con-
tains the second as a field, the second actually contains
the third and so on. Routers keep their children in a
Map. When action() calls arrive each component propa-
gates them down the chain.

The execution model of this framework will look as fol-
lows:

• The request coming to the root URL will be routed to
the default service.

• When custom services are invoked they can render an
HTML response (optionally delegating it to a tem-
plate) and insert into it URL paths of other custom
services, allowing to route next request to them.

• A custom service may also issue an HTTP redirect di-
rectly sending the user to another custom service. This
is useful when the former service performs some action
that should not be repeated (e.g. money transfer).

Note that in this assembly Path is not used at all and actions
are routed by the request URL.

Both filter and router services are stateful and reentrant.
Router services could either create a new stateless action
for each request (like WebWork [19] does) or route request
to existing reentrant actions (like Struts [3] does). Router
services could allow adding and removing (or enabling and
disabling) child actions at runtime, although care must be
taken to avoid destroying action that can be active on an-
other thread.

We have shown above how analogues of Struts and Web-
Work actions fit into this architecture. WebWork intercep-
tors could be implemented as a chain of filter services that
decide based on InputData and OutputData whether to en-
rich them and then delegate work to the child service. There
could be filter services both before action router and after.
The former would be shared between all actions while the
latter would be private for each action instance.

4.2 Stateful Non-Reentrant Controllers
To emulate the stateful non-reentrant controllers we will

need to host widgets in the user session. To do that we
assemble the framework as follows:

1. Servlet [6] adapter component.

2. Session router that creates a new service for each new
session and passes the action() call to the associated
service.

3. Synchronizing filter service that let’s only one request
proceed at a time.

4. HTTP filter service.

5. Widget adapter service that translates
a service action() call into a widget
update()/event()/process()/render() request-
response cycle.

6. Widget container widget that will read from request
the path to the widget that the event should be routed
to and call event() with the correct path.

7. Page container widget that will allow the current child
widget to replace itself with a new one.

8. Application root widget which in many cases is the
login widget.

This setup is illustrated on Figure 2.
A real custom application would most probably have lo-

gin widget as the application root. After authenticating
login widget would replace itself with the actual root wid-
get, which in most cases would be the application menu
(which would also contain another page container widget as
its child).

The menu would contain a mapping of menu items to
widget classes (or more generally factories) and would start
the appropriate widget in the child page container when the
user clicks a menu item. The custom application widgets
would be able to navigate among each other using the page
context added by the page container to their environment.

The execution model of this framework will look as fol-
lows:

• The request coming to the root URL will be routed
to the application root widget. If this is a new user
session, a new session service will be created by the
session router.

5

Figure 2: Framework assembly for hosting pages

• Only one request will be processed at once (due to syn-
chronizing filter). This means that widget developers
should never worry about concurrency.

• The widget may render a response, however it has no
way of directly referencing other widgets by URLs.
Therefore it must send all events from HTML to it-
self.

• Upon receiving an event the widget might replace it-
self with another widget (optionally passing it data as
a constructor parameter) using the context provided
by the page container widget. Generally all modifica-
tions of the widget hierarchy (e.g. adding/removing
children) can only be done during event part of the
request-response cycle.

• The hierarchy of widgets under the application root
widget (e.g. GUI elements like forms or tabs) may be
arranged using usual Composite widget implementa-
tions as no special routing is needed anymore.

In the real setup page container widget may be emulated
using flow container widget that allows replacing the current
flow with a new one.

Such an execution model is very similar to that of Wicket
[20], JSF [8] or Tapestry [5] although these frameworks sep-
arate the pages from the rest of components (by declaring a
special subclass) and add special support for markup com-
ponents that compose the actual presentation of the page.

4.3 Stateful Non-Reentrant Controllers with
Flows

To add nested processes we basically need only to replace
the page container with a flow container in the previous

model:

1. Servlet [6] adapter component.

2. Session router service.

3. Synchronizing filter service.

4. HTTP filter service.

5. Widget adapter service.

6. Widget container widget.

7. Flow container widget that will allow to run nested
processes.

8. Application root flow widget which in many cases is
the login flow.

The execution model here is very similar to the one out-
lined in Subsection 4.2. The only difference is that the appli-
cation root flow may start a new subflow instead of replacing
itself with another widget.

This model is similar to that of Spring WebFlow [18], al-
though Spring WebFlow uses Push-Down Finite State Au-
tomaton to simulate the same navigation pattern and con-
sequently it has only one top-level call stack. In our model
call stacks can appear at any level of widget composition hi-
erarchy, which makes our model considerably more flexible.

4.4 Combining the Models
It is also relatively easy to combine these models, modify-

ing the model shown on figure 2 by putting a URL path
router service before the session router, map the session
router to a particular URL path and put a flow container in
the end.

The combined model is useful, since reentrant stateless
services allow to download files from database and send
other semi-static data comfortably to the user. They can
also be used to serve parts of the application that has the
highest demand and thus load.

5. FRAMEWORK ASPECTS
Next we examine some typical web framework aspects and

how they are realized in Aranea.

5.1 Configuration
The first aspect that we want to examine is configuration.

We have repeated throughout the paper that the compo-
nents should form a dynamic hierarchy, however it is com-
fortable to use a static configuration to wire the parts of the
hierarchy that form the framework core.

To do that one can use just plain Java combining a hier-
archy of objects using setter methods and constructors. But
in reality it is more comfortable to use some configuration
mechanism, like an IoC container. We use in our config-
uration examples Spring [17] IoC container and wire the
components together as beans. Note that even such static
configuration contains elements of dynamicity, since some
components (á la root user session service) are wired not as
instances, but via a factory that returns a new service for
each session.

6

5.2 Security
The most common aspect of security that frameworks

have to deal with is authorization. A common task is to
determine, whether or not the current user has enough priv-
ileges to see a given page, component or GUI element. In
many frameworks the pages or components are mapped to a
particular URL, which can also be accessed directly by send-
ing an HTTP request. In such cases it is also important to
restrict the URLs accessible by the user to only those he is
authorized to see.

When programming in Aranea using stateless re-entrant
services they might also be mapped to particular URLs that
need to be protected. But when programming in Aranea us-
ing widgets and flows (a stateful programming model) there
is no general way to start flows by sending HTTP requests.
Thus the only things that need protection are usually the
menu (which can be assigned privileges per every menu item)
and the active flow and widgets (which can only receive the
events they subscribe to).

This simplifies the authorization model to checking
whether you have enough privileges to start the flow before
starting it. Since most use-cases should have enough privi-
leges to start all their subflows it is usually enough to assign
coarse-grained privileges to use-cases that can be started
from the menu as well as fine-grained privileges for some
particular actions (like editing instead of viewing).

5.3 Error Handling
When an exception occurs the framework must give the

user (or the programmer) an informative message and also
provide some recovery possibilities. Aranea peculiarity is
that since an exception can occur at any level of hierarchy
the informing and recovery may be specific to this place
in the hierarchy. Default behavior for Aranea components
is just to propagate the error up the hierarchy to the first
exception handler component

For example it might be required to be able to cancel a
flow that has thrown an exception and return back to the
flow that invoked the faulty flow. A logical solution is to let
the flow container (and other similar components) to handle
their children’s exceptions by rendering an informative error
subpage instead in place of the flow. The error page can then
allow canceling flows by sending events to the flow container.

With such approach when we have several flow containers
on one HTML page, then if two or more flows under different
containers fail, they will independently show error subpages
allowing to cancel the particular faulty flows. Note also
that such approach will leave the usual navigation elements
like menus intact, which will allow the user to navigate the
application as usual.

5.4 Concurrency
Execution model of Aranea is such that each web request

is processed on one Java thread, which makes system consid-
erably easier to debug. By default Aranea does not synchro-
nize component calls. It does, however, protect from trying
to destroy a working component. If a service or widget cur-
rently in the middle of some method call will be destroyed,
the destroyer will wait until it returns from the call. To
protect from deadlock and livelock, after some time the lock
will be released with a warning.

When we want to synchronize the actual calls (as we need
for example with widgets) we can use the synchronizing ser-

vice that allows only one action() call to take place simul-
taneously. This service can be used when configuring the
Aranea framework to synchronize calls on e.g. browser win-
dow threads. This allows to program assuming that only
one request per browser window is processed at any mo-
ment of time. Note that widgets should always be behind a
synchronizing filter and cannot process concurrent calls.

6. INTEGRATION SCENARIOS
In this section we describe our vision of how web controller

frameworks could be integrated with Aranea or among each
other. In practice, we have so far integrated Aranea only
with one internal framework with stateful Portlet-like [12]
components, where Aranea components were hosted within
the latter framework, but we are considering integrating
with such frameworks as Wicket [20], JSF [8], Tapestry [5],
Spring WebFlow [18], Struts [3], and WebWork [19].

Integration is notorious for being hard to create general-
izations about. Each integration scenario has its own set of
specialized problems and we find that this article is not the
right place to write about them. For this reason we keep this
section intentionally very abstract and high-level and try to
describe general principles of web controller framework in-
tegration without drowning in implementation details.

In the following we assume that depending on their nature
it is possible to model components of frameworks we want
to integrate as one of:

• service-like—reentrant and/or stateless component1,

• widget-like—non-reentrant stateful component.

Note that both notions consist of two contracts: interface of
component and contract of the container of the component.

In our abstraction we have essentially the following inte-
gration scenarios:

• service-service,

• service-widget,

• widget-service,

• widget-widget.

Here, for instance, ”service-widget” should be read as: ”ser-
vice-like component of framework X containing widget-like
component of framework Y”. In homogeneous (i.e. service-
service and widget-widget) integration scenarios one has to
find a mapping between service (resp. widget) interface
methods invocations of two frameworks. Although we do
not find this mapping trivial, there is little we can say with-
out considering specialized details of particular frameworks.
However, our experience shows that, thanks to minimalis-
tic and orthogonal interfaces and extensibility of Aranea,
the task becomes more tractable than with other monolithic
frameworks. We now concentrate on heterogeneous cases of
server-widget and widget-service integration. They can also
occur within Aranea framework itself, but are more typi-
cal when disparate frameworks using different programming
models are integrated.

In service-widget scenario, generally, each web request is
processed by some service and then the response is rendered

1Note that Servlets [6] are, for instance, service-like compo-
nents.

7

by possibly different service, whereas both services can be
reentrant and/or stateless. As a result, such services cannot
host themselves the widgets whose life-time spans multiple
requests handled by different services. Consequently, widget
instances should be maintained in stateful widget container
service(s) with longer life-span. At each request such ser-
vices would call update() and event() methods of the con-
tained widgets. Widgets would be instantiated by services
processing the request and rendered using render() method
by services generating the response. Each service processing
a request should explicitly decide which widgets are to be
kept further, all the rest are to be destroyed (within current
session). As the services are generally reentrant, it is impor-
tant to exclude concurrent access to the widgets belonging
to the same session. The simplest solution is to synchronize
on session at each web request that accesses widgets.

In widget-service scenario, services should be contained in
service container widgets in the position within widget hi-
erarchy most suitable for rendering the service. On widget
update(), the data entitled for the contained service should
be memorized. On widget render() the memorized data
should be passed to the action() method of contained ser-
vice to render the response. If the service responds with
redirection, which means that the request should not be re-
run, the service should be replaced with the service to which
the redirection points. After that and on all subsequent ren-
derings the action() method of the new service should be
called with redirection parameters.

Coming back to not-so-abstract reality, when integrating
frameworks the following issues should be handled with care:

• How data is represented in the web request and how
output of multiple components coexists in the gener-
ated web response.

• Namespaces (e.g. field identifiers in web request) of
contained components should not mix with the names-
pace of container components, which in general means
appending to the names a prefix representing location
of contained component within the container.

• State management, especially session state history
management (browser’s back, forward, refresh and new
window navigation commands) and keeping part of the
state on the client, should match between integrated
components. We explore this topic further in Subsec-
tion 7.2.

• A related issue to consider is view integration. Many
web frameworks support web components that are
tightly integrated with some variant of templating.
Consequently it is important that these templating
technologies could be intermixed easily.

Incompatibilities in these aspects lead to a lot of mundane
protocol conversion code, or even force modifying integrated
components and/or frameworks.

Generalized solutions to these issues could be standard-
ized as Aranea Protocol. As compared to such proto-
col, current Aranea Java interfaces are relatively loose—
i.e. functionality can be considerably customized by using
Message protocol and extending core interfaces (InputData,
OutputData, Component) with new subintefaces.

Altogether, we envision the following integration scenarios
with respect to Aranea:

Guest Aranea components (resp. services or widgets) are
hosted within components of framework X that comply
to the Aranea component (resp. service or widget)
container contract.

Host Aranea components host components (resp. service-
like or widget-like) of framework X through an adapter
component that wraps framework X components into
Aranea component (resp. service or widget) interface.

Protocol Framework X components provide Aranea com-
ponent (resp. service or widget) container contract
that hosts framework Y components wrapped into
Aranea component (resp. service or widget) interface
using an adapter component.

7. EXTENSIONS AND FUTURE WORK
In this section we discuss important functionality that is

not yet implemented in Aranea. In some cases we have very
clear idea how to do it, in other cases our understanding is
more vague.

7.1 Blocking Calls and Continuations
Consider the following very simple scenario:

1. When user clicks a button, we start a new subflow.

2. When this subflow eventually completes we want to
assign its return value to some text field.

In event-driven programming model the following code
would be typical:

OnClickListener listener = new OnClickListener() {

void onClick() {

Handler handler = new Handler() {

void onFinish(Object result) {

field.setText((String)result);

}

}

getFlowCtx().

start(new SubFlow(), handler);

}

}

button.addOnClickListener(listener);

What strikes here is the need to use multiple event listeners,
and as a result writing multiple anonymous classes that are
clumsy Java equivalent of syntactical closures. What we
would like to write is:

OnClickListener listener = new OnClickListener() {

void onClick() {

String result = (String)getFlowCtx().

call(new SubFlow());

label.setText(result);

}

}

button.addOnClickListener(listener);

What happens here is that flow is now called using blocking
semantics.

Typically blocking behavior is implemented by suspend-
ing executed thread and waiting on some concurrency prim-
itive like semaphore or monitor. The disadvantage of such
solution is that operating system threads are expensive, so

8

using an extra thread for each user session would be a ma-
jor overkill—most application servers use a limited pool of
worker threads that would be exhausted very fast. Besides,
threads cannot be serialized and migrated to other cluster
nodes. A more conceptual problem is that suspended thread
contains information regarding processing of the whole web
request, whereas it can be woken up by a different web re-
quest. Also, in Java blocking threads would retain ownership
of all monitors.

In [25] and [22] continuations were proposed to solve
the blocking problem in web applications, described above.
Continuation can be thought of as a lightweight snapshot
of thread’s call stack that can be resumed multiple times.
There still remains the problem that both thread and con-
tinuation contain information regarding processing of the
whole request, but can be woken up by a different web re-
quest.

To solve this problem partial continuations [23] can be
used. Essentially, the difference is that the snapshot of call
stack is taken not from the root, but starting from some
stack frame that we will call boundary. In case of Aranea, the
boundary will be the stack frame of event handler invocation
that may contain blocking statements. So in case of our
previous example the boundary will be invocation of method
onClick(). When we need to wait for an event, the following
should be executed:

1. Take current partial continuation,

2. Register it as an event handler,

3. Escape to the boundary.

Similar approach can be also applied to services though
mimicking such frameworks as Cocoon [2] and RIFE [14].
We’d like to stress that by applying continuations to widget
event handlers we can create a more powerful programming
model because there can be simultaneous linear flows at dif-
ferent places of the same widget hierarchy, e.g. in each flow
container. This programming model is similar to that of
Smalltalk web framework Seaside [21] that uses continua-
tions to provide analogous blocking call semantics of flows,
but not event handlers in general.

Java does not have native support for continuations, but
luckily there exists experimental library [7] that allows sus-
pending current partial continuation and later resuming it.
Aranea currently does not have implementation of this ap-
proach, however, it should be relatively easy to do that.
Event handlers containing blocking statements should be
instrumented with additional logic denoting continuation
boundaries. We could use e.g. AspectJ [24] to do that.

Altogether we view blocking calls as a rather easily im-
plementable syntactic sugar above the core framework. At
the same time we find that combining event-based and se-
quential programming in a component framework is a very
powerful idea because different parts of application logic can
be expressed using the most suitable tool.

7.2 State Management
We have also solutions to the following problems related

to state management:

• Optimizing memory consumption—in high perfor-
mance applications low memory consumption of ses-
sion state representation is essential. The interface

of Component has methods disable() and enable()

that allow releasing all unnecessary resources when dis-
abled.

• Client-side state—part of session state can be kept
within web response that later becomes web request or
within a cookie [13]. This also allows reducing server-
side memory consumption.

• Navigation history—supporting (or sensibly ignoring)
browser’s back, forward, refresh and new window nav-
igation commands. This can be useful both for us-
ability, decreasing server-side state representation or
for integrating with other frameworks that rely on
browser’s navigation commands as the only navigation
mechanism.

7.3 Integration and Portals
It is important to note that so far we have described only

applications that are configured before deployment and work
within one Java virtual machine (or homogeneous cluster).
There are portal applications that would benefit from dy-
namic reconfiguration and using widgets or flows deployed
to another environment. The latter could happen for mul-
tiple reasons such as using a different platform (like .NET),
co-location of web application with database or just admin-
istrative reasons.

One possible approach is to integrate with Portlet [12]
specification together with remote integration protocol
WSRP [9]. Unfortunately portlets cannot be composed into
hierarchies and have many limitations on how they can com-
municate with each other. There is also no notion of nested
process in portlets. Finally, portal implementations that we
are aware of allow reconfiguring portals only by redeploy-
ment.

It should be easy to assemble out of Aranea components a
portal application that would contain multiple pre-packaged
applications, communicating with each other, but the con-
figuration would have to be read on deployment. One fur-
ther direction is to integrate Aranea with some component
framework allowing dynamic reconfiguration, such as OSGi
[11].

Another related direction is to develop a remote integra-
tion protocol that would allow creating a widget that would
be a proxy to a widget located in another environment. One
important issue would be minimizing the number of round-
trips.

7.4 Fat Client
Lately, more and more web applications started using

asynchronous requests to update parts of the page without
resubmitting and refreshing the whole page. Some appli-
cations even implement most of UI logic on the client-side
and use web server essentially as a container for the busi-
ness layer. The enabling technology is called Ajax [1] and
is essentially a small API that allows sending web requests
to the server. We think that this trend will continue and in
future most application will use this approach to a varying
extent.

The first option is when UI logic is still implemented on
the server-side, but in order to make web pages more re-
sponsive sometimes ad-hoc asynchronous requests are used
to update page structure without refreshing the whole page.
This can be accomplished in Aranea using either messages

9

or the fact that widgets extend services and consequently
have action(input,output) method. Within widget, some
kind of simple event handling logic could be implemented.

Another option is when all UI implemented on the client-
side within browser and server-side controller acts essentially
as a business layer. Although business layer is often state-
less, we find that Aranea could be used to create a coarse-
grained server-side representation of UI state, essentially
representing activated use-cases, modeled most naturally as
flows. Client-side UI would we able to only execute com-
mands making sense in the context of current server-side UI
state. Such approach is very convenient for enforcing com-
plex stateful authorization rules and data validation would
have to be performed on the server-side in any case.

8. RELATED WORK
As it was mentioned before, Aranea draws its ideas from

multiple frameworks such as Struts [3], WebWork [19],
JavaServer Faces [8], ASP.NET [4], Wicket [20], Tapestry
[5], WASH [26], Cocoon [2], Seaside [21], Spring Web Flow
[18], and RIFE [14]. When possible we have referenced the
original source of idea at the moment of introducing it.

Although we were not aware of Seaside [21] when devel-
oping this framework, we have to acknowledge that rich UI
programming interface of widgets and flows is almost iden-
tical with programming interface of Seaside, but the design
of Seaside differs a lot and it is not intended as a component
model for web framework construction and integration.

9. ACKNOWLEDGEMENTS
Development of Aranea implementation has been sup-

ported by Webmedia, Ltd. We are grateful to Maksim
Boiko, who prototyped the implementation in his bache-
lor thesis and Konstantin Tretyakov, who provided valuable
input as well as help with developing the presentation mod-
ule. This work was partially supported by Estonian Science
Foundation grant No. 6713.

10. SUMMARY
In this paper we have motivated and described a compo-

nent model for assembling web controller frameworks. We
see it as a platform for framework development, integration
and research.

There exists an open source implementation of Aranea
framework available at http://araneaframework.org/. It
is bundled together with reusable controls, such as input
forms and data lists and advanced JSP-based rendering en-
gine. This framework has been used in real projects and we
find it ready for production use. Interested reader can also
find at this address an extended version of this article with
many details that had to be omitted here.

11. REFERENCES
[1] Ajax. Wikipedia encyclopedia article available at

http://en.wikipedia.org/wiki/AJAX.

[2] Apache Cocoon project. Available at
http://cocoon.apache.org/.

[3] Apache Struts project. Available at
http://struts.apache.org/.

[4] ASP.NET. Available at http://asp.net/.

[5] Jakarta Tapestry. Available at
http://jakarta.apache.org/tapestry/.

[6] Java Servlet 2.4 Specification (JSR-000154). Available
at http://www.jcp.org/aboutJava/

communityprocess/final/jsr154/index.html.

[7] The Javaflow component, Jakarta Commons project.
Available at http://jakarta.apache.org/commons/

sandbox/javaflow/index.html.

[8] JavaServer Faces technology. Available at
http://java.sun.com/javaee/javaserverfaces/.

[9] OASIS Web Services for Remote Portlets. Available at
www.oasis-open.org/committees/wsrp/.

[10] Open source web frameworks in Java. Available at
http://java-source.net/open-source/

web-frameworks.

[11] OSGi Service Platform. Available at
http://www.osgi.org/.

[12] Portlet Specification (JSR-000168). Available at
http://www.jcp.org/aboutJava/communityprocess/

final/jsr168/.

[13] RFC 2109 - HTTP State Management Mechanism.
Available at
http://www.faqs.org/rfcs/rfc2109.html.

[14] RIFE. Available at http://rifers.org/.

[15] RIFE/Crud. Available at
http://rifers.org/wiki/display/rifecrud/.

[16] Ruby on Rails. Available at
http://www.rubyonrails.org/.

[17] Spring. Available at http://springframework.org.

[18] Spring Web Flow. Available at
http://opensource.atlassian.com/confluence/

spring/display/WEBFLOW/.

[19] WebWork, OpenSymphony project. Available at
http://struts.apache.org/.

[20] Wicket. Available at
http://wicket.sourceforge.net/.

[21] S. Ducasse, A. Lienhard and L. Renggli. Seaside — a
multiple control flow web application framework.
ESUG 2004 Research Track, pages 231–257,
September 2004.

[22] P. T. Graunke, S. Krishnamurthi, V. der Hoeven and
M. Felleisen. Programming the web with high-level
programming languages. In European Symposium on
Programming (ESOP 2001), 2001.

[23] R. Hieb, K. Dybvig and C. W. Anderson, III.
Subcontinuations. Lisp and Symbolic Computation,
7(1):83–110, 1994.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm and W. G. Griswold. An overview of AspectJ.
Lecture Notes in Computer Science, 2072:327–355,
2001. Project web site:
http://www.eclipse.org/aspectj/.

[25] C. Queinnec. The influence of browsers on evaluators
or, continuations to program web servers. ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 23–33,
2000.

[26] P. Thiemann. An embedded domain-specific language
for type-safe server-side web-scripting. Available at
http://www.informatik.uni-freiburg.de/
∼thiemann/haskell/WASH/.

10

