
1

On Duality in Functional
Programming

Härmel Nestra

Institute of Computer Science

University of Tartu

e-mail: harmel.nestra@ut.ee

2

Note

THIS PRESENTATION IS PROVIDED “AS IS”. THE AUTHOR IS
IN NO WAY LIABLE FOR ANY KIND OF INCONVENIENCES
CAUSED BY USING THE IDEAS OF THIS PRESENTATION IN
PRACTICE.

3

Outline

Sorry for the too abstract abstract.

1. Case-expression and record expression.

2. Pattern guard construction.

3. Pattern guards categorically.

4. Categorical dualization of pattern guards.

1 Case-expression and record expression 4

Case-expression and record
expression

1 Case-expression and record expression 5

Case-expression syntax

< case-expression > → case < expression > of
< pattern >

-> < expression >
. .
< pattern >

-> < expression >

1 Case-expression and record expression 6

Record expression syntax

< record expression > → < constructor >
{

< selector >
= < expression >,

. .
< selector >

= < expression >,
}

1 Case-expression and record expression 7

Case-expression example

dropWhile p xs
= case xs of

z : zs
-> if p z then dropWhile p zs else xs

_
-> []

1 Case-expression and record expression 8

Record expression example

toComplex x
= (:+)

{
realPart

= x,
imagPart

= 0,
}

1 Case-expression and record expression 9

Categorical explanation of the duality

Let (Ai | i ∈ I) a family of objects and C an object.

– A one-to-one correspondence:∑
i∈I Ai → C ←→

∏
i∈I(Ai → C),

f 7−→ (ini ;f | i ∈ I) ,
`

g ←− [g = (gi | i ∈ I) .

Case-construction corresponds to operator
`

.

– Dual one-to-one correspondence:

C →
∏

i∈I Ai ←→
∏

i∈I(C → Ai),

f 7−→ (f ; exi | i ∈ I) ,
a

g ←− [g = (gi | i ∈ I) .

Record construction corresponds to operator
a

.

2 Pattern guard construction 10

Pattern guard construction

2 Pattern guard construction 11

Syntax

< pattern guard > → < qualifier >, . . ., < qualifier >
< qualifier > → < generator >

| < guard >

– Usage of pattern guards is similar to the Standard Haskell usage
of guards.

– The traditional guard is obtained if the list of qualifiers consists
of one qualifier which is a guard.

– Implemented in GHC (not in Hugs).

2 Pattern guard construction 12

Semantics

The general idea is pattern matching together with backtracking.

– Guard is semantically a special case of generator.

∗ Guard g is equivalent to generator True <- g.

∗ Thus one may assume every qualifier is a generator.

– The generators in one pattern guard are read from left to right.

– For generator p <- e, pattern p is matched against expression
e.

If this succeeds then the next generator of the same pattern guard
is studied.

Otherwise the whole pattern guard is abandoned, the bindings
introduced by them are forgotten.

– The rhs corresponding to the first pattern guard whose all pattern
matches succeed is selected.

If no pattern guard satisfies this condition then a backtracking is
performed.

2 Pattern guard construction 13

Example

The most natural definition of dropWhile is obtained with help of
pattern guards:

dropWhile p xs
| z : zs <- xs, p z

= dropWhile p zs
| otherwise

= xs

2 Pattern guard construction 14

Special cases

Pattern guard construction generalizes both guard construction and
case-expression.

In both cases, it suffices to have one qualifier in each pattern guard.

– Case-expression is obtained when all pattern guards consist of
one generator and all rhss of the generators are (syntactically)
equal.

∗ This correspondence is not total since case-expression does
not enable backtracking. However, this is not an important
difference in our theoretical study.

– Guard construction is obtained when all pattern guards consist
of one generator where the patterns of the generators are equal
to True.

Pattern guards is what the programmer actually needs!

3 Pattern guards categorically 15

Pattern guards categorically

3 Pattern guards categorically 16

Assumption

Assume for simplicity that each pattern guard consists of one genera-
tor.

3 Pattern guards categorically 17

Elements of pattern guard construciton

The programmer determines explicitly:

– a set I whose elements correspond to cases;

– for every i ∈ I , a sum type
∑

j∈Ji
Xij to which the rhs of the ith

generator belongs;

– for every i ∈ I , a function fi : A →
∑

j∈Ji
Xij which is the rhs

of the ith generator;

– for every i ∈ I , index ji ∈ Ji, corresponding to the addend of
the sum type being selected by the lhs of the ith generator;

– for every i ∈ I , a function gi : Xiji
→ B which is the rhs

corresponding to the ith case.

3 Pattern guards categorically 18

Implicit categorical elements

In addition, we have

– injections ιji
: Xiji

→
∑

j∈Ji
Xij;

– injections ιi : Xiji
→

∑
i∈I Xiji

;

– a function
`

g :
∑

i∈I Xiji
→ B.

3 Pattern guards categorically 19

Function defined by pattern guard construction

A pattern guard construction determines:

– a function µ : A→
∑

i∈I Xiji
— making a decision;

– the final result µ ;
`

g : A→ B.

3 Pattern guards categorically 20

Choice function

The choice function µ : A→
∑

i∈I Xiji
categorically:

• for every i ∈ I , pair (fi, ιji
) determines pullback square (αi, ξi)

with αi : Ki → A and ξi : Ki → Xiji
;

• µ satisfies

∀i ∈ I (αi ; µ = ξi ; ιi).

3 Pattern guards categorically 21

Pullback square

A pullback square corresponding to pair of functions f : A → C
and g : B → C is a set K = {a ∈ A, b ∈ B | f(a) = g(b) • (a, b)}
together with projection functions to A and B.

If g is injective then, for each a, there exists at most one b such that
f(a) = g(b):

– K degenerates to a subset of A,

– projection to A forms a natural injection,

– projection to B is a function which, for every a, returns a b such
that f(a) = g(b).

3 Pattern guards categorically 22

Our case

In our case:

– Ki is a part of type A, consisting of values in case of which the
ith guard is chosen;

– αi is the natural injection;

– ξi is a function which, for every value from Ki, returns a corre-
sponding value from Xiji

, i.e., the result of pattern matching.

4 Categorical dualization of pattern guards 23

Categorical dualization of pattern
guards

4 Categorical dualization of pattern guards 24

Construction elements

The programmer must determine:

– a set I whose elements correspond to construction elements;

– for every i ∈ I , a product type
∏

j∈Ji
Xij which is the domain

of the rhs of the ith element (this rhs could be called coguard);

– for every i ∈ I , a function fi :
∏

j∈Ji
Xij → A which is the rhs,

i.e., the coguard;

– for every i ∈ I , an index ji ∈ Ji corresponding to the factor
of the product type to which the lhs of the ith element of the
construction belongs;

– for every i ∈ I , a function gi : B → Xiji
— the lhs.

Note that the lhss and rhss are interchanged w.r.t. pattern guard con-
struction.

4 Categorical dualization of pattern guards 25

Implicit categorical elements

Additionally, we have

– projections πji
:
∏

j∈Ji
Xij → Xiji

;

– projections πi :
∏

i∈I Xiji
→ Xiji

;

– function
a

g : B →
∏

i∈I Xiji
.

4 Categorical dualization of pattern guards 26

Function under definition

The new construction should determine:

– function ν :
∏

i∈I Xiji
→ A which could be called join function;

– the final result
a

g ; ν : B → A.

4 Categorical dualization of pattern guards 27

Join function

Join function ν :
∏

i∈I Xiji
→ A categorically:

• for every i ∈ I , pair (fi, πji
) determines pushout square (βi, ηi)

with βi : A→ Ri and ηi : Xiji
→ Ri;

• ν satisfies

∀i ∈ I (ν ; βi = πi ; ηi).

4 Categorical dualization of pattern guards 28

Pushout square

The pushout square corresponding to the pair of functions f : C → A
and g : C → B is the factor set R of set A + B w.r.t. the equivalence
induced by relation {c ∈ C | •(f(c), g(c))}, together with injections
from A and B.

If g is surjective then, for each b, there exists an a such that

(a, b) ∈ {c ∈ C | •(f(c), g(c))} ⊆ (A + B)/R:

– R degenerates to a factor set of A,

– the injection from A changes to natural surjection;

– the injection from B turns to the function which, for every b, re-
turns the equivalence class containing that a in the case of which

(a, b) ∈ {c ∈ C | •(f(c), g(c))} .

4 Categorical dualization of pattern guards 29

Our case

Call the factor set classification.

– Ri is a classification on type A which identifies at least for all
x ∈ Xiji

all values fi(p) such that πji
(p) = x;

– βi is the natural projection;

– ηi is the function which, for every x ∈ Xiji
, returns the class

containing values fi(p) such that πji
(p) = x;

– ν(q), where q ∈
∏

i∈I Xiji
, is such an a ∈ A which, for every

i ∈ I , belongs to the class of the ith classification that contains
fi(p) for all p such that πji

(p) = πi(q).

4 Categorical dualization of pattern guards 30

Possible syntax

< dual construction >
→ & < cogenerator >

= < expression >
.
& < cogenerator >
= < expression >

< cogenerator >
→ < position > < simple pattern > <- < expression >

4 Categorical dualization of pattern guards 31

Types

For every i ∈ I:

– the rhs of the ith construction element is of type A provided the
variable defined in the simple pattern is of type

∏
j∈Ji

Xij;

– position in the ith cogenerator determines ji;

– the rhs of the ith cogenerator is of type Xiji
.

4 Categorical dualization of pattern guards 32

Semantics

All rhss are evaluated in order. The value of the construction is such a
value which matches all rhss.

– The last operation is unification.

– If a contradiction arises between some rhss then evaluation of
the whole construction fails.

4 Categorical dualization of pattern guards 33

Philosophical interpretation

Each cogenerator presents a fragment of some complex structure.

Each rhs presents partial information about some one and the same
value in terms of the complex structure.

The task is to determine this one and the same value.

4 Categorical dualization of pattern guards 34

Special cases

If each rhs coincides with the variable bound in the lhs of the corre-
sponding cogenerator then we in principle obtain a record expression.

