
Model Checking Embedded
Synchronous Hardware Compilers

Gordon Pace
University of Malta

(joint work with Koen Claessen)

Theory Days, Voore, Estonia

September 2006

Embedded Languages

• A meta-language for free

– Generation

– Analysis

– Manipulation

– Semantics

• Tools for free

Regular Expressions in Haskell

data RegExp = Input Char

| Plus RegExp

| RegExp :+: RegExp

| RegExp :>: RegExp

When embedding a language as a data structure, nice datatypes are

very desirable.

Manipulation and Generation

any :: [RegExp] -> RegExp

any [e] = e

any (e:es) = e :+: any es

getString :: [Char] -> RegExp

getString [c] = Input c

getString (c:cs) = Input c :>: getString cs

permutations :: [Char] -> RegExp

permutations cs = any [getString cs’ | cs’ <- perms cs]

So what?

Well, let me first say something about Lava. . .

Lava in a Nutshell

• It is an embedded language

• It is embedded in Haskell

• It is a synchronous hardware description language

Combinational circuits

majority :: (Sig, Sig, Sig) -> Sig

majority (x,y,z) = or2(xy, or2(yz, xz))

where

xy = and2(x,y)

yz = and2(y,z)

xz = and2(x,z)

Combinational circuits (2)

majority :: (Sig, Sig, Sig) -> Sig

majority (x,y,z) = or2(xy, or2(yz, xz))

where

xy = and2(x,y)

yz = and2(y,z)

xz = and2(x,z)

Main> simulate majority (high, low, low)

low

Combinational circuits (3)

majority :: (Sig, Sig, Sig) -> Sig

majority (x,y,z) = or2(xy, or2(yz, xz))

where

xy = and2(x,y)

yz = and2(y,z)

xz = and2(x,z)

Main> writeVhdl "majority2" majority

Writing to file "majority2.vhd" ... Done.

Generic Combinational circuits

exactlyZero :: [Sig] -> Sig

exactlyZero sigs = inv (orl sigs)

exactlyOne :: [Sig] -> Sig

exactlyOne [] = low

exactlyOne (x:xs) = mux(x, (one, zero))

where

one = exactlyOne xs

zero = exactlyZero xs

twoOrMore sigs = nor2(exactlyZero sigs, exactlyOne sigs)

Parametrized combinational circuits

exactly :: Int -> [Sig] -> Sig

exactly 0 sigs = inv (orl sigs)

exactly n [] = low

exactly n (s:sigs) = mux (s, (nLeft, n_1Left))

where

nLeft = exactly n sigs

n_1Left = exactly (n-1) sigs

twoOrMore sigs = nor2(exactly 0 sigs, exactly 1 sigs)

Main> simulate (exactly 1) [low, low, high, low]

high

Delays in Lava. . .

delay init value

register (write, valueIn) = valueOut

where

valueOut = mux (write, (memory, valueIn))

memory = delay low valueOut

1
0 M

U
X

valueIn write

mem

valueOut

Sequential simulation

always :: Sig -> Sig

always sig = now

where

before = delay high now

now = and2(before, sig)

Sequential simulation

always :: Sig -> Sig

always sig = now

where

before = delay high now

now = and2(before, sig)

Main> simulateSeq always [high, high, high, low, high]

[high,high,high,low,low]

Verification

compareMajorities (x,y,z) = ok

where

ok = majority (x,y,z) <==> twoOrMore [x,y,z]

Verification

compareMajorities (x,y,z) = ok

where

ok = majority (x,y,z) <==> twoOrMore [x,y,z]

Main> vis compareMajorities

Vis: ... (t=0.0)

Valid.

Verification (2)

another (w,x,y,z) = ok

where

ok = exactly 2 [w,x,y,z] ==> majority (x,y,z)

Verification (2)

another (w,x,y,z) = ok

where

ok = exactly 2 [w,x,y,z] ==> majority (x,y,z)

Main> verify another

Proving: ... Falsifiable.

(high,high,low,low)

Compiling Embedded Languages

• A hardware compiler is just another parametrised circuit.

• We can use Lava to describe one . . .

• and reason about the programs generated . . .

• and about the compiler itself.

Compiling Embedded Languages

Circuits parametrized by programs . . .

regexp :: RegExp -> Circuit_RegExp

prefix

start

match

type Circuit_RegExp :: Sig -> (Sig, Sig)

Compiling Embedded Languages
start

match

a
prefix

f

start

e

match

prefix

regexp (Input x) start = (prefix, match)

where

prefix = and2(start, match)

match = delay low prefix

regexp (e :+: f) start = (prefix, match)

where

(prefix_e, match_e) = regexp e start

(prefix_f, match_f) = regexp f start

prefix = or2(prefix_e, prefix_f)

match = or2(match_e, match_f)

A more complex language

data Flash =

Assign Sig

| Flash :|| Flash

| ...

type flashCircuit = Sig -> (Sig, (Sig,Sig))

flash :: Flash -> Circuit

start

assign

value

finish

And then use a register . . .
start

finish

reg
value

compile prg start = (finish, value)

where

(finish, (assign, newvalue)) = flash prg start

value = register (assign, newvalue)

Compiling Flash

flash (Assign val) start = (finish, (assign, newvalue))

where

finish = delay low start

assign = start

newvalue = val

flash (p :|| q) start = (fin, (wr, val))

where

(f_p, (w_p, v_p)) = flash p start

(f_q, (w_q, v_q)) = flash q start

wr = or2(w_p, w_q)

val = mux(w_p, (v_p, v_q))

fin = synchronise (f_p, f_q)

start

value

assign

finish

synchroniser

Q

P

Reasoning about Embedded Languages (1)

Implementation-Observer Verification

By using observers, we can reason about

compiled circuits directly.

Reasoning about Embedded Languages (1)

Implementation-Observer Verification

(program ‘satisfies‘ observer) (start, ins) = ok

where

outs = compile (program ins) start

ok = observer (start, ins, outs)

Reasoning about Embedded Languages (1)

Implementation-Observer Verification

(program ‘satisfies‘ observer) (start, ins) = ok

where

outs = compile (program ins) start

ok = observer (start, ins, outs)

majorityFlash (x,y,z) =

While high (

While x (

Assign (y <|> z)

) :>

Assign (y <&> z)

)

Reasoning about Embedded Languages (1)

Implementation-Observer Verification

(program ‘satisfies‘ observer) (start, ins) = ok

where

outs = compile (program ins) start

ok = observer (start, ins, outs)

majority’ (s, xyz, (f, val)) = ok

where

ok = always (s <==> delay high low)

==> (majority xyz <==> val)

Reasoning about Embedded Languages (1)

Implementation-Observer Verification

(program ‘satisfies‘ observer) (start, ins) = ok

where

outs = compile (program ins) start

ok = observer (start, ins, outs)

Main> lesar (majorityFlash ‘satisfies‘ majority’)

Lesar: ... (t=0.0)

Valid.

Reasoning about Embedded Languages (2)

Verification for Compilation

• Add an observer wire to the compiled circuit which checks

compiler semantic preconditions.

• We can model-check that the result really works.

• And by ignoring the observer wire, we get the original compiled

circuit.

Reasoning about Embedded Languages (2)

Verification for Compilation

flash (p :|| q) start = (fin, (wr, val))

where

(f_p, (w_p, v_p)) = flash p start

(f_q, (w_q, v_q)) = flash q start

wr = or2(w_p, w_q)

val = mux(w_p, (v_p, v_q))

fin = synchronise (f_p, f_q)

Reasoning about Embedded Languages (2)

Verification for Compilation

flash (p :|| q) start = (fin, (wr, val), err)

where

(f_p, (w_p, v_p), e_p) = flash p start

(f_q, (w_q, v_q), e_q) = flash q start

wr = or2(w_p, w_q)

val = mux(w_p, (v_p, v_q))

fin = synchronise (f_p, f_q)

both = andl[w_p, v_p <=/=> v_q, w_q]

err = orl[e_p, both, e_q]

Reasoning about Embedded Languages (2)

Verification for Compilation

noClash prg = inv err

where

start = delay high low

(_,_,err) = flash prg start

up = Assign high down = Assign low

clock1 = While high (up :> down)

clock3 = While high (up :> Delay :> Delay :>

down :> Delay :> Delay)

Main> lesar (noClash (clock1 :|| clock3))

Lesar: ... (t=0.1)

Valid.

Reasoning about Embedded Languages (2)

Verification for Compilation

• Testing methods for functional programs (eg see Quickcheck) can

be applied on huge programs

• error wires (and components that are used to calculate it) do

not appear in the final circuit once verified

• Various constructs have error wires, eg:

– Loop bodies take time

– Shared components are only syntactically shared

– Dependencies in languages with potential combinational

cycles (verify (constructive circuit))

– Data overflow

Reasoning about Embedded Languages (3)

Syntactic Reasoning and Verification of Compilation

Verification of algebraic laws is useful so as to:

• increase confidence in the compilation

• allow us to reason (mechanically) syntactically (eg to improve

compiled circuit efficiency)

Reasoning about Embedded Languages

Syntactic Reasoning and Verification of Compilation

regexp (e :+: f) start = (prefix, match)

where

(prefix_e, match_e) = regexp e start

(prefix_f, match_f) = regexp f start

prefix = or2(prefix_e, prefix_f)

match = or2(match_e, match_f)

plusCircuit (s, p, m) (s1,p1,m1) (s2,p2,m2) = ok

where

ok = andl [s1 <==> s

, s2 <==> s

, p <==> or2(p1,p2)

, m <==> or2(m1,m2)

]

Reasoning about Embedded Languages (3)

Syntactic Reasoning and Verification of Compilation

plusCommutative (c,c’,c1,c2) = ok

where

ok = always (

andl [plusCircuit c c1 c2

, plusCircuit c’ c2 c1

, sameStart c c’

]

) ==> sameMatch c c’

Main> verify plusCommutative

Proving: ... (t=0.2) Valid.

Reasoning about Embedded Languages (4)

Syntactic Reasoning and Verification of Compilation

But this approach does not always work . . .

• Flash programs produce one finish for every start recieved.

• ∀ P . P :|| skip ≡ P

We need language invariants and environment conditions and

combine them together using structural and temporal induction.

This is indispensable when we combine languages and optimise

compilation.

Reasoning about Embedded Languages (4)

Flash Invariant and Environment condition

Environment condition: I, the environment, hereby solemnly

declare that I will always wait for the second party (also known

as the program) to reciprocate with a finish for every start that I

provide, before I proceed to give another start. I will thus adhere

to
∫

s ≤
∫

f + 1.

The invariant: I, the program, hereby solemnly declare that I will

never produce a finish unless the environment has previously

provided me with a start. I also guarantee, never to provide more

than one finish for each start that I receive. I will thus adhere to
∫

f ≤
∫

s.

Reasoning about Embedded Languages (4)

Regular Expressions Invariant

invariant (start, prefix, match) =

match ==> delay low prefix

In general, the property will be of the form:

property interface =

always(environment interface) ==> invariant interface

Reasoning about Embedded Languages (4)

Regular Expressions Invariant

structuralInduction0 invariant constructor result =

always (

result <==> constructor

) ==> invariant result

structuralInduction1 invariant constructor (result, subexp1) =

always (

and2 (result <==> constructor subexp1

, invariant subexp1

)

) ==> invariant result

etc

Reasoning about Embedded Languages

Regular Expressions Invariant

proveREInvariant invar =

do

verify (structuralInduction0 invar inputCircuit)

verify (structuralInduction2 invar nondetCircuit)

verify (structuralInduction2 invar seqCircuit)

verify (structuralInduction1 invar repCircuit)

Discussion

• There’s nothing new here, we’re just making a point about how

useful embedded languages can be for verification and language

design/compilation.

• The new observation is that for safety properties, we have a finite

model, and can thus ‘easily’ model-check it.

• Combining languages can be a hazardous business. Take

precautions!

Current and Future Work

• Data paths complicate matters considerably, and we are

currently investigating the use of this technique with Esterel.

• Correctness of compilation with respect to operational semantics

• Fitting better into a framework for combining synchronous

languages

