Looking Iinto Java
.class files

Ando Saabas

Theory days, Voore
30.09.2006

Why understand the JVM and
bytecode?

e Needed when writing a...
Compiler
Bytecode verifier
Optimizer
Decompiler
Obfuscator

e Important when debugging, memory usage
and performance tuning

e Lots for theoretical computer scientists to do
research about

What is Java Virtual Machine?

e A virtual machine that executes Java
pytecode

e It Is a stack based machine, which runs
programs that are in a standardized portable
pinary format (class files)

e Contains a

Interpreter/just-in-time compiler which executes
the bytecode

Bytecode verifier, which verifies all class files
before they are executed

How does a JVM work?

e Each thread has a JVM stack which stores
frames

e A frame Is created each time a method is
Invoked. It consists of
an operand stack
an array of local variables,
reference to the runtime constant pool of the class
of the method
e When a method completes, a frame Is
destroyed

Frame stack

|

|

Local variables

012
HEEEEE |

Heap
|
Operand stack N\
" Constant pool

Stack and local variable array

e The array of local variables contains the
parameters of the method and the local
variables

The first variable Is a reference to this

After that, the n parameters of the method are
stored (variables 1..n)

The size of the array is determined at compiletime
e The stack is a LIFO stack used to push and
pop values.
Also used to receive return values from methods
The size of the stack is determined at compiletime

Heap and method area

e The heap Is shared among all virtual machine

threads

Its the data area from which memory for all class
Instances and arrays are located

Objects are never explicitly deallocated, but
storage Is reclaimed by an automatic storage
management system.

e Method area is logically part of the heap. In it,
per-class structures like runtime constant

pool, field and method data resides.

Types in JVM

e JVM operates on primitive and reference types
byte, 8-bit signed integers
short, 6-bit signed integers
Int, 32-bit signed integers
long, 64-bit sighed integers

char, 16-bit unsigned integers representing Unicode
characters

float, 32-bit IEEE 754 floating-point numbers
double, 64-bit IEEE 754 floating-point numbers
returnAddress types

(no boolean types)

e class types, interface types, and array types

Instruction set summary

e |nstruction consists of a 1 byte opcode,
followed by O or more operands

e Most instructions encode type information
about the operations they perform

Example: iload loads a value which must be an
iInteger from the local variable on top of the stack

Kinds of instructions

e Load and store instructions (iload, astore, ...)

Transfer values between local variables and the
operand stack

e Arithmetic instructions (ladd, fdiv,...)

Apply a function on values in the operand stack,
pop the values, push back the result

e Type conversion instructions (between
numeric types: i2d, f21, ...)

e Object creation and manipulation (new,
newarray, getfield, putstatic,...)

Kinds of instructions

e Operand stack management instructions
(pop, dup, swap,...).

e Control transfer instructions (goto, ifeq, Ifgt,
If_acmpne, ...)

e Method invocation and return instructions
(invokevirtual, invokestatic, areturn, return,...)

e Throwing exceptions (athrow)
e Implementing finally (jsr, ret, ...)
e Synchronization instructions

Class file

e Includes general information about the class
(access flags, class and superclass name
etc.) and 5 main components

Constant pool
Interfaces
Fields
Methods
Attributes

Constant pool

e Contains all constants needed in the class,
from numeric and string literals known at
compiletime to method and field references
that must be resolved at runtime.

e Instructions refer to symbolic information in
the constant pool

CONSTANT_ Class
CONSTANT _Fieldref
CONSTANT Methodref
CONSTANT _InterfaceMethodref
CONSTANT _String
CONSTANT Integer
CONSTANT _Float
CONSTANT_Long
CONSTANT Double
CONSTANT NameAndType
CONSTANT _Utf8

Interfaces and fields

o Interfaces

An array of indexes into the constant pool table
containing a class_info constant

e Flelds

Defined by its access flags, name and descriptor
iIndex, and a number of attributes (e.g. the
ConstantValue attribute).

Methods

e A method Is described by its access flags,
name and descriptor index and an array of
attributes

e Some method attributes:
Code — the bytecode of the method
Exceptions
Line number table (for debugging)
Local variable table (for debugging)

Important method attributes

e Code attribute
e Max stack size
e Max number of locals
o Code length
e Code

e EXxception table
e Start pc
e End pc
e Handler pc
o Catch type

Sample bytecode

class Grcle {
i nt radi us;
doubl e get Area() {
return radius * radius * Math. Pl;

al oad 0O

getfield #2 <Test4/radius |>
al oad_0O

getfield #2 <Test4/radius |>
| mul

| 2d

10 Idc2_ w #3 <3.141592653589793>
13 dmnul

14 dreturn

© o 01 o P O

Sample bytecode

int divide(int x, int y) {
try {
return x/vy;
} catch (Arithneti cException ae){
ae. printStackTrace();
return O;

}

|l oad 1
'l oad_2 0| 3| 4 |#13
| di v

| return
astore_ 3
al oad_3

| nvokevirtual #14
<javal/l ang/ Arithneti cException/ printStackTrace() V>

9 iconst O
10 ireturn

}

OOk, WNPEFO

Why view/edit bytecode?

e To understand how a JVM or compiler works

e Totesta
Verifier
Decompiler
Optimizer

e To hand-optimize code

Java Bytecode Editor

e Built on top of the open source jclasslib
bytecode viewer by ej-technologies

e Makes use of the Apache’s bytecode
engineering library
e Allows adding/removing constants, fields,

Interfaces, methods, exceptions and editing
method code

e Integrates the Justlce bytecode verifier

e Can be downloaded from
http://cs.loc.ee/~ando/jbe/

