
Looking into Java
.class files

Ando Saabas

Theory days, Voore
30.09.2006

Why understand the JVM and
bytecode?

� Needed when writing a...
� Compiler
� Bytecode verifier
� Optimizer
� Decompiler
� Obfuscator
�

� Important when debugging, memory usage
and performance tuning

� Lots for theoretical computer scientists to do
research about

What is Java Virtual Machine?

� A virtual machine that executes Java
bytecode

� It is a stack based machine, which runs
programs that are in a standardized portable
binary format (class files)

� Contains a
� Interpreter/just-in-time compiler which executes

the bytecode
� Bytecode verifier, which verifies all class files

before they are executed

How does a JVM work?

� Each thread has a JVM stack which stores
frames

� A frame is created each time a method is
invoked. It consists of
� an operand stack
� an array of local variables,
� reference to the runtime constant pool of the class

of the method

� When a method completes, a frame is
destroyed

Heap

Constant pool

Frame stack

Operand stack

Local variables

Constant pool

1 20

Stack and local variable array

� The array of local variables contains the
parameters of the method and the local
variables
� The first variable is a reference to this
� After that, the n parameters of the method are

stored (variables 1..n)
� The size of the array is determined at compiletime

� The stack is a LIFO stack used to push and
pop values.
� Also used to receive return values from methods
� The size of the stack is determined at compiletime

Heap and method area

� The heap is shared among all virtual machine
threads
� Its the data area from which memory for all class

instances and arrays are located
� Objects are never explicitly deallocated, but

storage is reclaimed by an automatic storage
management system.

� Method area is logically part of the heap. In it,
per-class structures like runtime constant
pool, field and method data resides.

Types in JVM

� JVM operates on primitive and reference types
� byte, 8-bit signed integers
� short, 6-bit signed integers
� int, 32-bit signed integers
� long, 64-bit signed integers
� char, 16-bit unsigned integers representing Unicode

characters
� float, 32-bit IEEE 754 floating-point numbers
� double, 64-bit IEEE 754 floating-point numbers
� returnAddress types
� (no boolean types)

� class types, interface types, and array types

� Instruction consists of a 1 byte opcode,
followed by 0 or more operands

� Most instructions encode type information
about the operations they perform
� Example: iload loads a value which must be an

integer from the local variable on top of the stack

Instruction set summary

Kinds of instructions

� Load and store instructions (iload, astore, ...)
� Transfer values between local variables and the

operand stack

� Arithmetic instructions (iadd, fdiv,…)
� Apply a function on values in the operand stack,

pop the values, push back the result

� Type conversion instructions (between
numeric types: i2d, f2l, ...)

� Object creation and manipulation (new,
newarray, getfield, putstatic,...)

Kinds of instructions

� Operand stack management instructions
(pop, dup, swap,...).

� Control transfer instructions (goto, ifeq, ifgt,
if_acmpne, ...)

� Method invocation and return instructions
(invokevirtual, invokestatic, areturn, return,...)

� Throwing exceptions (athrow)
� Implementing finally (jsr, ret, ...)
� Synchronization instructions

Class file

� Includes general information about the class
(access flags, class and superclass name
etc.) and 5 main components
� Constant pool
� Interfaces
� Fields
� Methods
� Attributes

Constant pool

� Contains all constants needed in the class,
from numeric and string literals known at
compiletime to method and field references
that must be resolved at runtime.

� Instructions refer to symbolic information in
the constant pool

� CONSTANT_Class
� CONSTANT_Fieldref
� CONSTANT_Methodref
� CONSTANT_InterfaceMethodref
� CONSTANT_String
� CONSTANT_Integer
� CONSTANT_Float
� CONSTANT_Long
� CONSTANT_Double
� CONSTANT_NameAndType
� CONSTANT_Utf8

Interfaces and fields

� Interfaces
� An array of indexes into the constant pool table

containing a class_info constant

� Fields
� Defined by its access flags, name and descriptor

index, and a number of attributes (e.g. the
ConstantValue attribute).

Methods

� A method is described by its access flags,
name and descriptor index and an array of
attributes

� Some method attributes:
� Code – the bytecode of the method
� Exceptions
� Line number table (for debugging)
� Local variable table (for debugging)

Important method attributes

� Code attribute
� Max stack size
� Max number of locals
� Code length
� Code

� Exception table
� Start pc
� End pc
� Handler pc
� Catch type

Sample bytecode
class Circle {

int radius;

double getArea() {

return radius * radius * Math.PI;

}

}

0 aload_0

1 getfield #2 <Test4/radius I>

4 aload_0

5 getfield #2 <Test4/radius I>

8 imul

9 i2d

10 ldc2_w #3 <3.141592653589793>

13 dmul

14 dreturn

Sample bytecode
int divide(int x, int y) {

try {
return x/y;

} catch (ArithmeticException ae){
ae.printStackTrace();
return 0;

}
}
0 iload_1
1 iload_2
2 idiv
3 ireturn
4 astore_3
5 aload_3
6 invokevirtual #14
<java/lang/ArithmeticException/printStackTrace()V>

9 iconst_0
10 ireturn

0 3 4 #13

Why view/edit bytecode?

� To understand how a JVM or compiler works
� To test a

� Verifier
� Decompiler
� Optimizer
�

� To hand-optimize code

Java Bytecode Editor

� Built on top of the open source jclasslib
bytecode viewer by ej-technologies

� Makes use of the Apache’s bytecode
engineering library

� Allows adding/removing constants, fields,
interfaces, methods, exceptions and editing
method code

� Integrates the JustIce bytecode verifier
� Can be downloaded from

http://cs.ioc.ee/~ando/jbe/

