
Control and data dependency-
based automated analysis of 

security protocols for 
confidentiality

Ilja Tšahhirov
(joint work with Peeter Laud)



2

Problem statement

• Given the program (performing 
computations and exchanging 
messages over public channel),

• Working with some secret data
• No active adversary should be able 

to learn anything about the secret 
data

• Automatically determine whether 
the protocol is secure or not.



3

Existing Solutions

• Properties of cryptographic 
primitives enable modification 
of protocol text

• It is possible to achieve the 
point when “secret” value is 
not used in the protocol 
anymore.

• Bruno Blanchet technique –
uses this approach. 

• Syntax trees or flow graphs 
are not the best program 
representation for 
transformations.

• Program with operational 
semantics.

• Adversary running the 
program and observing 
its outputs.

• Secrecy definition –
adversary cannot 
distinguish between two 
identical programs 
working with different 
secret data.



4

Our Technique Outline

• Program in WHILE-style 
language.

• Operational semantics.
• Adversary running the 

program and observing 
its outputs.

• Secrecy definition –
adversary cannot 
distinguish between two 
identical programs 
working with different 
secret data.

• Program dependency 
graph

• Graph semantics –
functional dependency of 
outputs on the inputs.

• Adversary supplying the 
inputs and observing the 
outputs.

• Secrecy definition – no 
functional dependency of 
the outputs on the secret 
data.



5

Technique Outline 2
kp:=gen_key_pair

pk:=get_pub_key(kp)

Replicate

(

sk_1:=gen_s_key

sk_2:=gen_s_key

sks:=(sk_1,sk_2)

sks_e:=aenc(pk,sks)

send(sks_e)

rsks_e:=receive

rsks:=adecd(kp,rsks_e)

rsk_1:=proj_1^2(rsks)

rsk_2:=proj_2^2(rsks)

check(rsk_1=sk_1)

M_e:=senc(sk_2,M)

send(M_e)

)

…



6

Program language semantics

• Structural operational semantics

• Program execution is set of transitions on the 
configuration set

• Configuration captures computation state at a given 
moment



7

Program language semantics 2



8

Security definition

S
e

c
re

t1

S
e

c
re

t2

The protocol is considered secure if there's no non-
negligible correlation between the final state of the 
adversary and the secret message



9

Translation to graphs
kp:=gen_key_pair

pk:=get_pub_key(kp)

Replicate

(

sk_1:=gen_s_key

sk_2:=gen_s_key

sks:=(sk_1,sk_2)

sks_e:=aenc(pk,sks)

send(sks_e)

rsks_e:=receive

rsks:=adecd(kp,rsks_e)

rsk_1:=proj_1^2(rsks)

rsk_2:=proj_2^2(rsks)

check(rsk_1=sk_1)

M_e:=senc(sk_2,M)

send(M_e)

)

Adversary “playing” with graph should observe at least 
same set of info as running the program.



10

Graph execution rules

• Graph represents:
– Operations occurring in the protocol (nodes)

– Data dependencies (edges)

– Control dependencies (edges)

– Adversary interface (special type of nodes -
Req)

– Note: If replication is present, the Graph is 
infinite (each replicated operation is present in 
N copies).



11

Graph execution rules 2
• Execution rules

– Adversary defines which outputs he’d like to see (sets 
true/false values to Req nodes), and which values are 
supplied to the inputs (values program gets from
communication channels)

– Now find the values of the outputs (using the graph
semantics).



12

Graph execution rules - example

x:= gen_sym_key

y:= random

z:= sym_enc (y,x)

send (z)



13

• Edges (dependencies)
• Nodes (operations) 
• Set of equations of type:

Depi = Operation (Dep1, … , Depn)
- One equation per node
- Specifies how the dependencies are related – each dependency 

is a function of other dependencies

• Smallest solution of the set of equations – final values, 
subset of them visible to Adversary.
– All Operations are monotone – so the smallest solution should 

exist.

• Security criteria – no functional dependency of outputs 
on secret.

Graph semantics



14

Equation examples

• Equation examples:
– dd3.i = Nonce( cd17.i, dd4.i)

– cd17.i = And( cd14.i, cd16.i)

– cd8.i = Req  This value is supplied by Adversary.



15

Graph transfromation

• Transforming the graph / equations

• The smallest solution should stay 
indistinguishable from the original one.

• Transformations are based on the
properties of the operation (including 
cryptographic primitives)



16

Control flow transformation
example



17

Operation transformation example



18

Pubenc transformation example - 1



19

Pubenc transformation example - 2



20

Pubenc transformation example - 3

Ifdef – selection operation



21

Operation transformation example



22

“Real” graph – a bit more complex 



23

“Real” graph – after some transforms 
applied – still complex.



24

Summary – what’s done, what’s 
left…

• Ready
– A nice idea
– Conceptual framework
– Programming language semantics
– Part of the graph semantics
– Analyzer prototype

• To be done
– Program -> graph translation correctness proof
– Graph transformation correctness proof
– Complete graph semantics
– Fully functional analyzer



Thank you


