Control and data dependency-
based automated analysis of
security protocols for
confidentiality

llja Tsahhirov
(joint work with Peeter Laud)

Problem statement

» Given the program (performing
computations and exchanging
messages over public channel),

* Working with some secret data

* No active adversary should be able
to learn anything about the secret
data

* Automatically determine whether
the protocol is secure or not.

Existing Solutions

* Program with operational

semantics.

* Adversary running the

program and observing
its outputs.

Secrecy definition —
adversary cannot
distinguish between two
identical programs
working with different
secret data.

Properties of cryptographic
primitives enable modification
of protocol text

It is possible to achieve the
point when “secret” value is
not used in the protocol
anymore.

Bruno Blanchet technique —
uses this approach.

Syntax trees or flow graphs
are not the best program
representation for
transformations.

Our Technique Outline

Program in WHILE-style °* Program dependency
language. graph
« Graph semantics —

Operational semantics. .

. functional dependency of
Adversary running the outputs on the inputs.
program and observing « Adversary supplying the
Its outputs. inputs and observing the
Secrecy definition — outputs.
adversary cannot « Secrecy definition — no
distinguish between two functional dependency of
identical programs the outputs on the secret

working with different data.

secret data.

Technique Outline 2

kp:=gen key pair
pk:=get pub key (kp)

Replicate

(
sk _l:=gen_ s key
sk _2:=gen_s key
sks:=(sk_1,sk 2)
sks_e:=aenc (pk, sks)
send (sks_e)
rsks _e:=receive
rsks:=adecd (kp,rsks_e)
rsk l:=proj 172 (rsks)
rsk 2:=proj 272 (rsks)
check (rsk_1=sk 1)
M e:=senc(sk_2,M)
send (M _e)

=P
.-\-Il‘l-. .
L
— gEm. Ja|
BEE T T e .
fEm TTEEE
e e REm o
' LR e,
S = o
=R | .
=
i CEEm i EE
=R B i
B ool

- Jo A

Program language semantics

Structural operational semantics

Program execution is set of transitions on the
configuration set

Configuration captures computation state at a given
moment

'The configuration i1s a tuple < S, s, out >, where
e S StmU {e}: unexecuted yet statements,

e s € State: current state (Var — Val),

e out € Val U{ok} U{L}: output to the adversary

Program language semantics 2

Afla]s # L

A ok
< PAsgn(z,a),s,- >=<¢€,s[x — Ala]s], ok ‘,:>(sgn”)

Afa]s = L
< PAsgn(z,a),s,- >=< PStopped, s, stuck >

(Asgn®)

< S1,8,_>=>< Si,s,out >

< PParal(S1,S2),s,- >=< PParal(S],S2),s’,out >
< S1,8,.>=><¢,5s,out >

< PParal(S1,52),s,->=>< S2,s’,out >
< 82,8, _>=>< 83,5 ,out >

< PParal(S1,S2),s,- >=< PParal(S1,S5%),s,out >
< Sa,8,_.>=<¢,5,out >

< PParal(S1,S52),s,- >=>< S1,s’,out >

(Paral')

(Paral”)

(Paral®)

(Paral®)

Security definition

The protocol is considered secure if there's no non-
negligible correlation between the final state of the
adversary and the secret message

Translation to graphs

kp:=gen key pair g

il £} My
L

pPk:=get_pub_key (kp)

I:_‘I"-l'.il. e .

. MR UEEE
T 'I'_:—‘I.-.!-_ Bt TN

Replicate e T

(Do et
sk _l:=gen_ s key - ;

H p e N -
DA e G -

sk _2:=gen_s key : oy o
sks:=(sk _1,sk _2) ; E _ L

sks_e:=aenc (pk, sks) Vaindl -_‘_
send (sks_e) E,I e
rsks_e:=receive il __EEE
rsks:=adecd (kp, rsks_e) T
rsk 1l:=proj 172 (rsks) ' |
rsk_2:=proj_ 22 (rsks) L Taa _

check (rsk_1l=sk 1) -
M e:=senc(sk_2,M) S =

send (M _e) ;_".j_'-:__:._

Adversary “playing” with graph should observ;at least
same set of info as running the program.

Graph execution rules

* Graph represents:
— Operations occurring in the protocol (nodes)
— Data dependencies (edges)
— Control dependencies (edges)

— Adversary interface (special type of nodes -
Req)

— Note: If replication is present, the Graph is
infinite (each replicated operation is present in
NN copies).

10

Graph execution rules 2

 Execution rules

— Adversary defines which outputs he'd like to see (sets
true/false values to Req nodes), and which values are
supplied to the inputs (values program gets from
communication channels)

— Now find the values of the outputs (using the graph
semantics).

11

Graph execution rules - example

X:= gen_sym key
y:= random

z:= sym enc (y,X)
send (z)

or

RS

A

¥ X

or

A

| ¥ ¥

—>.~—.‘!'- sym_key

or —-»| nonce

s ﬂ &
" L 4 &
s ks + #
5 , .
i) , 4 #
™ ks « #
k! , - -
"'\-\.K , ‘r_.r'
£ &
™ i P
LY i

or

sym_enc

l

sand

12

Graph semantics

Edges (dependencies)
Nodes (operations)

Set of equations of type:
Dep, = Operation (Dep,, ..., Dep,,)
- One equation per node

- Specifies how the dependencies are related — each dependency
is a function of other dependencies

Smallest solution of the set of equations — final values,
subset of them visible to Adversary.

— All Operations are monotone — so the smallest solution should
exist.

Security criteria — no functional dependency of outputs
on secret.

13

Equation examples

»> synmenc

dda.i
Y

> i

« Equation examples:
— dd3.i = Nonce(cd17.i, dd4.i)
— cd17.i = And(cd14.i, cd16.i)
— ¢d8.i = Req < This value is supplied by Adversary.

14

Graph transfromation

* Transforming the graph / equations

* The smallest solution should stay
indistinguishable from the original one.

* Transformations are based on the
properties of the operation (including
cryptographic primitives)

15

Control flow transformation
example

)

5"*. \ /
N ! /

b | !

%, 1 f

h ‘
o | !
i
i |
\
L1
y

f
!
¥
f
f
i
!
¥

.

.

LY F
1
% f
5, i
\ \ !
LY A\]
A [
R 1 i
'~.l~‘ | Il’
i F"' L Fr'
| I
i I
i
‘

i

16

- ----- > 112 22 |-~

Operation transformation example

TQ @
@D |
id |- i-}id

o & @ &

17

Pubenc transformation example - 1

ppppppp

18

Pubenc transformation example - 2

@_ -»{ RS
-
T
= EncrGroup
@ @

ppppppp

pppppp

19

Pubenc transformatlon example - 3

Ifdef — selection operation

G 20

Operation transformation example

21

graph — a bit more complex ©

“Realﬂ

P

.

B R T T T E T)

P T

applied — still complex.

- T —

v

B T T
i

feamw

-

'
'
L

“Real” graph — after some transforms

Summary — what's done, what's

left...
 Ready

— A nice idea

— Conceptual framework

— Programming language semantics
— Part of the graph semantics

— Analyzer prototype

 To be done
— Program -> graph translation correctness proof
— Graph transformation correctness proof
— Complete graph semantics
— Fully functional analyzer

24

Thank you

