Foundational certification of data-flow analyses

Tarmo Uustalu

Joint work with Maria Joao Frade and Ando Saabas

Theory Days at Voore, 29 Sept.—1 Oct. 2006

4 N
MOTIVATION .

e In proof-carrying code (PCC), programs come with proofs of
functional correctness or safety.

e In particular, this may involve certification of data-flow analyses (to
justify optimizations or establish safety).

e But why should one trust a proof, if it checks correctly, assuming it is
easy to believe that the checker is correct?

e A proof may be a correct proof in an incorrect proof system, e.g., if the
constants of the logic and the inferences rules are specialist.

N /

4 N

e Foundational PCC sets out to reduce the burden of trusting the
certification formalism by preferring special-purpose type systems to
program logics, and type systems and program logics to universal-logic
formalizations of their underlying semantics.

e The idea: prove everything from first principles or almost so. Less to
trust, more to check.

e This results in large certificates: either monolithic (relatively smaller)
or modular (bigger).

N /

THISTALK.

e \We play with the foundational ideology on data-flow analyses.
e \We look at the example of the live variables analysis.

e \We show how this is specified formally in a declarative manner as a
type system sound wrt. a suitable natural semantics.

e Beyond these two possible levels for reasoning about live variables, we
consider three more:
— a Hoare logic for live variables
— a natural semantics for def-use futures

— a Hoare logic for def-use futures

N /

LIVE VARIABLES ANALYSIS.

e A variable is live at a point on a computation path, if there is a future
useful use of it (i.e., a use in the rhs of an assignment to a live variable
or in a guard) with no definition before.

e Given the live variables after a run of a statement, the live variable
analysis aims to determine which variables may be live before.

N /

-

N

~

‘A NATURAL SEMANTICS FOR LIVE VARIABLES'

Introduce a natural semantics and a type system for live variables.

States are assignments of values from {dd, 11}, dd C 1l, to variables,
understood as “liveness states”.

We define 6 C ¢’ to mean that §(x) C ¢'(z) for any .

Evaluations of a statement are pre-poststate pairs given by the rules
6(z) =11 §(z) = dd
O[x — dd][FV(a) —] >z :=a—§ ° S>r:=a—08

2
— lvns

1
— lvns

) ~So— 5/ 5/ >S1— 5//
Complvns

Sklplvns

d >skip— & d >80;51— 0"

/

/) St— 5/ . ott

S[FV (b) — 11] =if b then s; else s7— &' V"

§>s5— 0 off
S[FV(b) — 11] >if b then s; else ss— 0’ Hlvas
5 >s— 6 & >whilebdo s;— §” tt

while

S[FV (b) — 11] >while b do s¢— 6" fvns

whilet?

S[FV(b) — 11] »while b do s;— & fvns

e E.g., fors=4¢if w=3then x :=y else x := z, we have
N—— ~——

St Sf

(lw, x +— dd,y — 1l, z — dd] >s¢— [w +— dd, x — 11, y, z — dd]
(lw,x+— dd,y — dd, z — ll] »ss— [w — dd,z — I, y, z — dd]
lw— 1,2 +—dd,y — 11, 2z +— dd] »s— [w — dd, x — 1, y, z — dd]

\ lw— 1,2 +—dd,y — dd, z — ll] »s— [w — dd, x — 1, y, z — dd]

BACKWARD COLLECTION '

e The above semantics i1s hon-deterministic, in the backward direction.

e To get a deterministic backward semantics, we define the collecting
version

[s]<« (") =at |_|{5 | 6>5—-4"}

e The collecting semantics calculates the MOP version of the live
variables analysis.

N /

4 N

N

A TYPE SYSTEM FOR LIVE VARIABLES.

e Also types are assignments of values from {dd, 11}, dd C 11 to variables
(used as non upper bounds of liveness states).

e Subtyping is a relation on types given by the rule
dCd
d<d

e Typings of a statement are pre-posttype pairs given by the rules

Ir:=a: d[az — dd][FV(b) —> 11] —d " lvts r:=a:d— d += lvts

, so:d—d s;:d —d’ com
skip) s s d F7 Plvts
51 d —

skip:d — d

/

st:d—d sp:d—d
if b then s; else s : d[FV(b) — 1I] — d’

iflvts

s+ d — d[FV(b) — 1I]
whilebdo s, : d[FV(b) — 1] — d

d<dy s:do—d, dy<d

s:d—d

CONSEq)y ¢

e Forthe example s =4¢ if w = 3 then x := y else x := z, one can get
s:lw—ll,x—dd,y,z+— 1] — [w—dd,x — 11, y, z +— dd]

but also

s:|w,x,y,z—ll] — [w—dd,z — 1l,y, z — dd]

N

10

Define § = dtomean § IZ d.

Subtyping is (trivially) sound and complete:
d<d iff
forany §, 6 = dimplies 6 = d’
(i.e.,, d T d implies § C d).

Typing is sound and complete:
s:d— d iff
for any 0, ¢’ such that § »s— ¢’, 6 |= d implies ¢’ = d’
(i.e., ¢’ C d' implies § C d).

Completeness of typing holds because the transfer functions of live
variables (updates) are distributive.

/

11

’ WEAKEST PRETYPES '

e Define a syntactic weakest pretype wpt of a type d’ by

11
dd

d'[x — dd][FV(a) — 1] if d'(x)
d’ if d'(x)

wpt(z :=a,d) =at {

wpt(skip,

=aqr (wpt(se,d) Uwpt(ss,d))[FV(b) — 1]]
—=qt (v(F)Ud)[FV(b) — 1l] where
F(d) =at (wpt(s¢,d) Ud)[FV(b) — 1]

N /

12

d’)
wpt(so;s1,d) =ar wpt(so, wpt(s1,d))
wpt(if b then s, else s¢,d’)

d')

wpt(while b do s¢,

-

e The wpt of a posttype is its principal pretype:

s:d—diffd < wpt(s,d).

e The wpt function calculates the MFP version of the analysis.

e From soundness and completeness, it follows that

wpt(s,d') = [s]«(d").
(where the equality holds because of the distributivity of updates).

13

~

Which is more foundational, the semantics or the type system?

The type system is a particularly styled indirect description of the
semantics, for deriving of semantic properties of a certain flavor, so. ..

One can formally reason about a program in the type system or in a
universal-logic formalization of the semantics.

In the former case one must trust the type system as a description of the
semantics (or check the soundness proof), in the latter case only the
semantics.

/

14

‘ A HOARE LOGIC FOR LIVE VARIABLES'

e Consider an alternative to the type system: a Hoare logic.

e Assertions are logic formulae over a signature with an extralogical
constant /s(x) for any program variable x (for the liveness value of z).

e Derivable triples are given by the rules

:—1lvhoa

(Is(x) =11 D Plls(x) — dd][Is(FV(a)) — 11])
A(ls(x) =dd D P)

i, P10lQ) (Qs ()
(Pyskip{P} """ T {Phsisi (R}

N /

15

{P}x:=a{

Complvhoa

4 N

N

{Plls(FV(0)) — 11} 5: {Q} {P[Is(FV(b)) —]} sy {Q} .
{P}if bthen s; else s {Q} Hivhoa
{P[ls(FV (b)) — 1]} s¢ { P}
{P} while b do s { P[ls(FV (b)) — 11]}
PEP {P}s{Q} QoFQ
{P}s{Q}

e The logic is sound and complete wrt. the semantics: { P} s {Q} iff, for
any 0, ¢’ and o, § =, P and § »s— ¢ imply ¢’ =, Q.

Whﬂelvhoa

CONSE€q;\hoa

/

16

-

e A type d can be translated as the assertion [s IZ d.

e Subtypings are preserved:

Ifd<d thenlsZd=1IsZd.

e ...and so are typings:

Ifs:d— d' then{ls L d}s{ls £ d'}.

17

/ e Like the type system, the logic derives properties of the semantics, but\
of a considerably more liberal form.

e For types, the logic is at least as powerful deductively as the type
system.

e But in fact the weakest precondition of a posttype can be better than the
weakest pretype: e.g., for s = if w = 3 then x := y else x := z,
wpt(s, |w +— dd,x — 1, y, z — dd])
= |wr—ll,z+—dd,y, z — 1]
wpc(s, (ls(w) =dd Alls(y) =dd A ls(z) = dd))
= —=(ls(w) =1 Als(x) =dd
A((Is(y) =11 AIs(z) =dd) V (Is(z) =11 A ls(y) = dd)))

e Via the translation, the type system is an applied version of the logic,
\ which describes the semantics more directly. /

18

-

‘ LIVENESS STATES ARE AN ABSTRACTION '

e The natural semantics for live variables is in terms of liveness states.
The evaluation rules describe some intuitions about the effect of
different statement constructions on liveness.

e In reality liveness states are an abstraction of computation paths.

e A more foundational semantics should be based on a more concrete
notion of a state.

N

19

/ ‘ A NATURAL SEMANTICS FOR DEF-USE FUTURES'

e States are lists of tokens D, UY, where z is a variable and y is a
variable or a special pseudovariable pc, understood as future def-use
traces.

e Evaluations are pre-poststate pairs given by the rules

/ / 1"
. T >>S0— T T >81—~> T
Sklplvns COIMPyng

~

/ / . 1/
T>s=> 71 T >whilebdo s¢— 7 tt

hil hil
\ UES,) - T>whilebdo s, 7" ™ UZ > whilebdo si— 7 Wj

FV (b)

T >skip— T T >»80; 81— T
/
T >8t—> T ot TSI T i
: 11 : 11
Uy ' T -if bthen sy else sp— 7' ™ UL,y - 7 >if bthen s else sp— 7/

VIS

20

vins

4 N

e Define LS(7)(z) to mean the liveness of z on a future def-use trace 7:

LS(€) (Z) =df dd

dd if 2=2x

LS(Dw-T)(Z) =af 4 LS(T)(Z) otherwise

\
i

11 if z=ax A (LS(7)(y) =11V y = pc)

LS(Uq; ' T)(Z) =df LS(T)(Z) otherwise

\

e The reinterpretation agrees with the natural semantics for live variables:
If - >-s— 7/, then
LS(7) >s— LS(77).
If § >s— LS(7'), then there is a trace
7 such that 7 >s— 7" and LS(7) = 6.

N /

21

4 N

A HOARE LOGIC FOR DEF-USE FUTURES'

e Assertions are logic formulae over a signature with an extralogical
constant ¢ for the current def-use future.

e Derivable triples of a statement are pre-postcondition pairs given by the
rules

{PYz = a{P[tr —» Upy(a - Da-tr]} "

i PYsofQ) (@simy o
{(PYskip (P} ~ " T {PYsesi {R)

N /

22

- ~

{P[tr — U{;C\,(b) . tT]} St {Q} {P[tr — Uzlj“c\/(b) . tr]} S¢ {Q} ’
{P}if bthen s; else s {Q} H1vhoa

{P[tr — U, - tr]} s; {P}

FV(b) |
hileivhoa
{P} while b do s; { Ptr — UL, - tr]} whileryn,
PEP {P}s{Q} QoEQ

Conseqlvhoa

{P}s{Q}

e Again, the logic is sound and complete wrt. the semantics: {P} s {Q}
iff, forany 7, 7/ and o, 7 =, P and 7 >s— 7/ imply 7’ =, Q.

- y

23

4 N

e Define LS to be a syntactic version of LS.

e An assertion P about a liveness state can be translated as the assertion
Plls — LS(tr)].

e This translation from the Hoare logic of liveness states to the Hoare
logic of future def-use traces preserves derivable triples:
If {P}s{Q}, then {P|ls — LS(tr)]} s{Q|ls — LS(tr)]}.

24

-

APPLICATIONS'

e With a transformation component added to the type system for live
variables, one can specify dead code elimination.

A statement is equivalent to its optimized form in a sense determined
by the typing.

e A combination of the Hoare logic of live variables with the standard
Hoare logic specifies the data-sensitive version of the live variables
analysis.

N

25

‘CONCLUSIONS.

e Certificates of data-flow analyses are possible on a variety of levels,
given by different levels of abstraction of the semantic entities and
specificity of the assertion language.

¢ In modular foundational certification, an initial proof of an interesting
property is constructed at a suitable level of abstraction and specificity.

This proof is then either translated to a proof in a more concrete and
universal formalism or supplemented with a once-and-for-all
meta-proof that translation of properties preserves their proofs.

N /

26

