
'

&

$

%

Foundational certification of data-flow analyses

Tarmo Uustalu

Joint work with Maria João Frade and Ando Saabas

Theory Days at Voore, 29 Sept.–1 Oct. 2006

1

'

&

$

%

MOTIVATION

• In proof-carrying code (PCC), programs come with proofs of

functional correctness or safety.

• In particular, this may involve certification of data-flow analyses (to

justify optimizations or establish safety).

• But why should one trust a proof, if it checks correctly, assuming it is

easy to believe that the checker is correct?

• A proof may be a correct proof in an incorrect proof system, e.g., if the

constants of the logic and the inferences rules are specialist.

2

'

&

$

%

• Foundational PCC sets out to reduce the burden of trusting the

certification formalism by preferring special-purpose type systems to

program logics, and type systems and program logics to universal-logic

formalizations of their underlying semantics.

• The idea: prove everything from first principles or almost so. Less to

trust, more to check.

• This results in large certificates: either monolithic (relatively smaller)

or modular (bigger).

3

'

&

$

%

THIS TALK

• We play with the foundational ideology on data-flow analyses.

• We look at the example of the live variables analysis.

• We show how this is specified formally in a declarative manner as a

type system sound wrt. a suitable natural semantics.

• Beyond these two possible levels for reasoning about live variables, we

consider three more:

– a Hoare logic for live variables

– a natural semantics for def-use futures

– a Hoare logic for def-use futures

4

'

&

$

%

LIVE VARIABLES ANALYSIS

• A variable is live at a point on a computation path, if there is a future

useful use of it (i.e., a use in the rhs of an assignment to a live variable

or in a guard) with no definition before.

• Given the live variables after a run of a statement, the live variable

analysis aims to determine which variables may be live before.

5

'

&

$

%

A NATURAL SEMANTICS FOR LIVE VARIABLES

• Introduce a natural semantics and a type system for live variables.

• States are assignments of values from {dd, ll}, dd v ll, to variables,

understood as “liveness states”.

• We define δ v δ′ to mean that δ(x) v δ′(x) for any x.

• Evaluations of a statement are pre-poststate pairs given by the rules

δ(x) = ll

δ[x 7→ dd][FV(a) 7→ ll] ¨x := a¢ δ
:=1

lvns

δ(x) = dd

δ ¨x := a¢ δ
:=2

lvns

δ ¨skip¢ δ
skiplvns

δ ¨s0¢ δ′ δ′ ¨s1¢ δ′′

δ ¨s0; s1¢ δ′′
complvns

6

'

&

$

%

δ ¨st¢ δ′

δ[FV(b) 7→ ll] ¨if b then st else sf¢ δ′
ifttlvns

δ ¨sf¢ δ′

δ[FV(b) 7→ ll] ¨if b then st else sf¢ δ′
iffflvns

δ ¨s¢ δ′ δ′ ¨while b do st¢ δ′′

δ[FV(b) 7→ ll] ¨while b do st¢ δ′′
whilett

lvns

δ[FV(b) 7→ ll] ¨while b do st¢ δ
whilett

lvns

• E.g., for s =df if w = 3 then x := y
︸ ︷︷ ︸

st

else x := z
︸ ︷︷ ︸

sf

, we have

[w, x 7→ dd, y 7→ ll, z 7→ dd] ¨st¢ [w 7→ dd, x 7→ ll, y, z 7→ dd]

[w, x 7→ dd, y 7→ dd, z 7→ ll] ¨sf¢ [w 7→ dd, x 7→ ll, y, z 7→ dd]

[w 7→ ll, x 7→ dd, y 7→ ll, z 7→ dd] ¨s¢ [w 7→ dd, x 7→ ll, y, z 7→ dd]

[w 7→ ll, x 7→ dd, y 7→ dd, z 7→ ll] ¨s¢ [w 7→ dd, x 7→ ll, y, z 7→ dd]

7

'

&

$

%

BACKWARD COLLECTION

• The above semantics is non-deterministic, in the backward direction.

• To get a deterministic backward semantics, we define the collecting

version

JsK≪(δ′) =df

⊔

{δ | δ ¨s¢ δ′}

• The collecting semantics calculates the MOP version of the live

variables analysis.

8

'

&

$

%

A TYPE SYSTEM FOR LIVE VARIABLES

• Also types are assignments of values from {dd, ll}, dd v ll to variables

(used as non upper bounds of liveness states).

• Subtyping is a relation on types given by the rule

d′ v d

d ≤ d′

• Typings of a statement are pre-posttype pairs given by the rules

d(x) = ll

x := a : d[x 7→ dd][FV(b) 7→ ll] −→ d
:=1

lvts

d(x) = dd

x := a : d −→ d
:=2

lvts

skip : d −→ d
skiplvts

s0 : d −→ d′ s1 : d′ −→ d′′

s0; s1 : d −→ d′′

complvts

9

'

&

$

%

st : d −→ d′ sf : d −→ d′

if b then st else sf : d[FV(b) 7→ ll] −→ d′
if lvts

st : d −→ d[FV(b) 7→ ll]

while b do st : d[FV(b) 7→ ll] −→ d
whilelvts

d ≤ d0 s : d0 −→ d′

0 d′

0 ≤ d′

s : d −→ d′

conseqlvts

• For the example s =df if w = 3 then x := y else x := z, one can get

s : [w 7→ ll, x 7→ dd, y, z 7→ ll] −→ [w 7→ dd, x 7→ ll, y, z 7→ dd]

but also

s : [w, x, y, z 7→ ll] −→ [w 7→ dd, x 7→ ll, y, z 7→ dd]

10

'

&

$

%

• Define δ |= d to mean δ 6v d.

• Subtyping is (trivially) sound and complete:

d ≤ d′ iff

for any δ, δ |= d implies δ |= d′

(i.e., δ v d′ implies δ v d).

• Typing is sound and complete:

s : d −→ d′ iff

for any δ, δ′ such that δ ¨s¢ δ′, δ |= d implies δ′ |= d′

(i.e., δ′ v d′ implies δ v d).

• Completeness of typing holds because the transfer functions of live

variables (updates) are distributive.

11

'

&

$

%

WEAKEST PRETYPES

• Define a syntactic weakest pretype wpt of a type d′ by

wpt(x := a, d
′) =df

8

<

:

d′[x 7→ dd][FV(a) 7→ ll] if d′(x) = ll

d′ if d′(x) = dd

wpt(skip, d
′) =df d

′

wpt(s0; s1, d
′) =df wpt(s0, wpt(s1, d

′))

wpt(if b then st else sf , d
′) =df (wpt(st, d

′) ∪ wpt(sf , d
′))[FV(b) 7→ ll]

wpt(while b do st, d
′) =df (ν(F) ∪ d

′)[FV(b) 7→ ll] where

F (d) =df (wpt(st, d) ∪ d
′)[FV(b) 7→ ll]

12

'

&

$

%

• The wpt of a posttype is its principal pretype:

s : d −→ d′ iff d ≤ wpt(s, d′).

• The wpt function calculates the MFP version of the analysis.

• From soundness and completeness, it follows that

wpt(s, d′) = JsK≪(d′).

(where the equality holds because of the distributivity of updates).

13

'

&

$

%

• Which is more foundational, the semantics or the type system?

• The type system is a particularly styled indirect description of the

semantics, for deriving of semantic properties of a certain flavor, so. . .

• One can formally reason about a program in the type system or in a

universal-logic formalization of the semantics.

• In the former case one must trust the type system as a description of the

semantics (or check the soundness proof), in the latter case only the

semantics.

14

'

&

$

%

A HOARE LOGIC FOR LIVE VARIABLES

• Consider an alternative to the type system: a Hoare logic.

• Assertions are logic formulae over a signature with an extralogical

constant ls(x) for any program variable x (for the liveness value of x).

• Derivable triples are given by the rules

{P}x := a {
(ls(x) = ll ⊃ P [ls(x) 7→ dd][ls(FV(a)) 7→ ll])

∧(ls(x) = dd ⊃ P)
}

:=lvhoa

{P} skip {P}
skiplvhoa

{P} s0 {Q} {Q} s1 {R}

{P} s0; s1 {R}
complvhoa

15

'

&

$

%

{P [ls(FV(b)) 7→ ll]} st {Q} {P [ls(FV(b)) 7→ ll]} sf {Q}

{P} if b then st else sf {Q}
if lvhoa

{P [ls(FV(b)) 7→ ll]} st {P}

{P}while b do st {P [ls(FV(b)) 7→ ll]}
whilelvhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqlvhoa

• The logic is sound and complete wrt. the semantics: {P} s {Q} iff, for

any δ, δ′ and α, δ |=α P and δ ¨s¢ δ′ imply δ′ |=α Q.

16

'

&

$

%

• A type d can be translated as the assertion ls 6v d.

• Subtypings are preserved:

If d ≤ d′, then ls 6v d |= ls 6v d′.

• . . . and so are typings:

If s : d −→ d′, then {ls 6v d} s {ls 6v d′}.

17

'

&

$

%

• Like the type system, the logic derives properties of the semantics, but
of a considerably more liberal form.

• For types, the logic is at least as powerful deductively as the type
system.

• But in fact the weakest precondition of a posttype can be better than the
weakest pretype: e.g., for s = if w = 3 then x := y else x := z,

wpt(s, [w 7→ dd, x 7→ ll, y, z 7→ dd])

= [w 7→ ll, x 7→ dd, y, z 7→ ll]

wpc(s,¬(ls(w) = dd ∧ ls(y) = dd ∧ ls(z) = dd))

= ¬(ls(w) = ll ∧ ls(x) = dd

∧((ls(y) = ll ∧ ls(z) = dd) ∨ (ls(z) = ll ∧ ls(y) = dd)))

• Via the translation, the type system is an applied version of the logic,
which describes the semantics more directly.

18

'

&

$

%

LIVENESS STATES ARE AN ABSTRACTION

• The natural semantics for live variables is in terms of liveness states.

The evaluation rules describe some intuitions about the effect of

different statement constructions on liveness.

• In reality liveness states are an abstraction of computation paths.

• A more foundational semantics should be based on a more concrete

notion of a state.

19

'

&

$

%

A NATURAL SEMANTICS FOR DEF-USE FUTURES

• States are lists of tokens Dx, Uy

x
, where x is a variable and y is a

variable or a special pseudovariable pc, understood as future def-use
traces.

• Evaluations are pre-poststate pairs given by the rules

Ux
FV(a) · Dx · τ ¨x := a¢ τ

:=1
lvns

τ ¨skip¢ τ
skiplvns

τ ¨s0¢ τ ′ τ ′
¨s1¢ τ ′′

τ ¨s0; s1¢ τ ′′

complvns

τ ¨st¢ τ ′

Upc

FV(b) · τ ¨if b then st else sf¢ τ ′
ifttlvns

τ ¨sf¢ τ ′

Upc

FV(b) · τ ¨if b then st else sf¢ τ ′
iffflvns

τ ¨s¢ τ ′ τ ′
¨while b do st¢ τ ′′

Upc

FV(b) · τ ¨while b do st¢ τ ′′
whilett

lvns Upc

FV(b) · τ ¨while b do st¢ τ
whilett

lvns

20

'

&

$

%

• Define LS(τ)(z) to mean the liveness of z on a future def-use trace τ :

LS(ε)(z) =df dd

LS(Dx · τ)(z) =df

8

<

:

dd if z = x

LS(τ)(z) otherwise

LS(Uy
x · τ)(z) =df

8

<

:

ll if z = x ∧ (LS(τ)(y) = ll ∨ y = pc)

LS(τ)(z) otherwise

• The reinterpretation agrees with the natural semantics for live variables:

If τ ¨s¢ τ ′, then

LS(τ) ¨s¢ LS(τ ′).

If δ ¨s¢ LS(τ ′), then there is a trace

τ such that τ ¨s¢ τ ′ and LS(τ) = δ.

21

'

&

$

%

A HOARE LOGIC FOR DEF-USE FUTURES

• Assertions are logic formulae over a signature with an extralogical

constant tr for the current def-use future.

• Derivable triples of a statement are pre-postcondition pairs given by the

rules

{P}x := a {P [tr 7→ Ux
FV(a) · Dx · tr]}

:=lvhoa

{P} skip {P}
skiplvhoa

{P} s0 {Q} {Q} s1 {R}

{P} s0; s1 {R}
complvhoa

22

'

&

$

%

{P [tr 7→ Upc

FV(b) · tr]} st {Q} {P [tr 7→ Upc

FV(b) · tr]} sf {Q}

{P} if b then st else sf {Q}
if lvhoa

{P [tr 7→ Upc

FV(b) · tr]} st {P}

{P}while b do st {P [tr 7→ Upc

FV(b) · tr]}
whilelvhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqlvhoa

• Again, the logic is sound and complete wrt. the semantics: {P} s {Q}

iff, for any τ , τ ′ and α, τ |=α P and τ ¨s¢ τ ′ imply τ ′ |=α Q.

23

'

&

$

%

• Define LS to be a syntactic version of LS.

• An assertion P about a liveness state can be translated as the assertion

P [ls 7→ LS (tr)].

• This translation from the Hoare logic of liveness states to the Hoare

logic of future def-use traces preserves derivable triples:

If {P} s {Q}, then {P [ls 7→ LS (tr)]} s {Q[ls 7→ LS (tr)]}.

24

'

&

$

%

APPLICATIONS

• With a transformation component added to the type system for live

variables, one can specify dead code elimination.

A statement is equivalent to its optimized form in a sense determined

by the typing.

• A combination of the Hoare logic of live variables with the standard

Hoare logic specifies the data-sensitive version of the live variables

analysis.

25

'

&

$

%

CONCLUSIONS

• Certificates of data-flow analyses are possible on a variety of levels,

given by different levels of abstraction of the semantic entities and

specificity of the assertion language.

• In modular foundational certification, an initial proof of an interesting

property is constructed at a suitable level of abstraction and specificity.

This proof is then either translated to a proof in a more concrete and

universal formalism or supplemented with a once-and-for-all

meta-proof that translation of properties preserves their proofs.

26

