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Motivation
Parametric polymorphism is one of the key features of
modern (functional) languages:
– most commonly in Hindley-Milner style, where type

variables are quntified in top level,
– but more recently also in less restricted form (eg. rank-2

or rank-n polymorphism).
”Common knowledge” about polymorphism:
– you get theorems for free! [Wadler, 1989] (but there are

some pessimists);
– polymorphic functions are (di)natural transformations

(or maybe vice versa?!);
– if you have PhD, get a real job! [Eppendhal, 2004]



Logical Relations and Parametricity
The usual reading of a type is that it’s a set of values
(maybe with some some extra structure):
– eg. the type Int is the set of integers;
– the type A× B is the set of pairs, where components are

from the sets corresponding to types A and B
respectively;

– etc.
An alternative is to take that a type is a relation:
– base types are interpreted as identity relations;
– eg. (x, y) ∈ Int ⇔ x = y;
– every type constructor is interpreted as a corresponding

action on relations.
Relational reading is the key for parametricity results and
free theorems.



Logical Relations and Parametricity

Definition
For any relations A : A ↔ A′, B : B ↔ B′, the relation
A× B : (A× B) ↔ (A′ × B′) is defined by:

((x, y), (x ′, y′)) ∈ A× B iff (x, x ′) ∈ A & (y, y′) ∈ B

For any relations A : A ↔ A′, B : B ↔ B′, the relation
A → B : (A → B) ↔ (A′ → B′) is defined by:

(f , f ′) ∈ A → B iff (x, x ′) ∈ A ⇒ (fx, f ′x ′) ∈ B

For any relation transformer F : F ↔ F ′, the relation
∀X .F(X ) : (∀X . F(X)) ↔ (∀X . F ′(X)) is defined by:

(g, g′) ∈ ∀X .F(X ) iff A : A ↔ A′ ⇒ (gA, g′
A′) ∈ F(A)



Logical Relations and Parametricity

Parametricity
If T is a closed type and t : T is a closed term, then (t, t) ∈ T ,
where T : T ↔ T is the relation corresponding to the type T .

Theorems for free
Given a closed type T

construct the corresponding relation T : T ↔ T ;
instanciate relation transformers with graph relations;
and simplify.

Definition
Given a function g : A → B, the graph relation 〈g〉 : A ↔ B is
defined by 〈g〉 = {(u, g u) | ∀u : A}



Logical Relations and Parametricity

Example

(t, t) ∈ ∀X .X → X ⇔ ∀R : A ↔ B. (tA, tB) ∈ R → R
⇔ ∀R : A ↔ B. ∀x : A, y : B.

(x, y) ∈ R ⇒ (tA x, tB y) ∈ R
⇒ ∀g : A → B. ∀x : A, y : B.

(x, y) ∈ 〈g〉 ⇒ (tA x, tB y) ∈ 〈g〉
⇔ ∀g : A → B. ∀x : A, y : B.

y = g x ⇒ tB y = g(tA x)

⇔ ∀g : A → B. ∀x : A. tB(g x) = g(tA x)

⇔ ∀g : A → B. tB ◦ g = g ◦ tA

Note
The equation says that t is a natural transformation Id → Id.



Natural transformations

Definition
Let G, H : C → D be functors. A natural transformation
τ : G → H is a family of maps τX : G(X) → H (X) in D such
that, for every map f : X → Y in C, the following square
commutes: G(X)

G(Y )

H (X)

H (Y )

G(f )

τX

H(f )

τX

Note
Type may have mixed variant type variables.
Separate the co- and contravariant instances and use
diagonalization to recover the original type.
Eg. ∀X . X → X = ∀X . H (X , X), where H (A, B) = A → B.



Dinaturality

Definition
Let G, H : Cop × C → D be functors.
A dinatural transformation θ : G → H is a family of maps
θX : G(X , X) → H (X , X) in D such that, for every map
f : X → Y in C, the following hexagon commutes:

G(Y , X)

G(X , X)

G(Y , Y )

H (X , X)

H (Y , Y )

H (X , Y )

G(f , X)

G(X , f )

θX

θY

H(X , f )

H(f , Y )



Strong dinaturality

Definition
A strong dinatural transformation θ : G → H is a family of
maps θX : G(X , X) → H (X , X) in D such that, for every

map f : X → Y in C,
object W in D and
maps p0 : W → G(X , X), p1 : W → G(Y , Y ) in D,

if the square commutes, then so does the hexagon:

W

G(X , X)

G(Y , Y )

G(X , Y ) ⇒

H (X , X)

H (Y , Y )

H (X , Y )

p0

p1

G(X , f )

G(f , Y )

θX

θY

H(X , f )

H(f , Y )



From parametricity to strong dinaturality

Covariant types

F(A) ::= A | C
| F(A)× F(A) | F(A) + F(A)

| G ′(A) → F(A) | ∀X . F([X , A])

G ′(A) ::= C
| G ′(A)×G ′(A) | G ′(A) + G ′(A)

| F(A) → G ′(A)



From parametricity to strong dinaturality

Contravariant types

G(A) ::= C
| G(A)×G(A) | G(A) + G(A)

| F ′(A) → G(A) | ∀X . G([X , A])

F ′(A) ::= A | C
| F ′(A)× F ′(A) | F ′(A) + F ′(A)

| G(A) → F ′(A)



From parametricity to strong dinaturality

Definition
A functor H : Cop × C → D is weakly cartesian if forall
f : A → B the bifunctoriality diagram is a weak pullback:

H (B, A)

H (B, B)

H (A, A)

H (A, B)

H(f , A)

H(B, f ) H(A, f )
H(f , B)

Weakly cartesian types

H (A, B) ::= G ′(A) | F ′(B)

| H (A, B)×H (A, B) | H (A, B) + H (A, B)

| C → H (A, B)



From parametricity to strong dinaturality

Definition
A type K is Eq2R if forall closed terms a : K (A, A), b : K (B, B)
and functions g : A → B

K (A, g) a = K (g, B) b =⇒ (a, b) ∈ K〈g〉

Eq2R types

K (A, B) ::= B | C
| K (A, B)×K (A, B) | K (A, B) + K (A, B)

| H (B, A) → K (A, B) | ∀X . K ([X , A], [X , B])



From parametricity to strong dinaturality

Definition
A type K is R2Eq if forall closed terms a : K (A, A), b : K (B, B)
and functions g : A → B

(a, b) ∈ K〈g〉 =⇒ K (A, g) a = K (g, B) b

R2Eq types

L(A, B) ::= B | C
| L(A, B)× L(A, B) | L(A, B) + L(A, B)

| K (B, A) → L(A, B) | ∀X . L([X , A], [X , B])



From parametricity to strong dinaturality

Theorem
Let K and L be System F types containing one free type
variable and let t : ∀X .K (X , X) → L(X , X) be a closed term of
closed type.

If K is Eq2R and L is R2Eq, then t is a strongly dinatural
transformation.



From parametricity to strong dinaturality

Theorem
Let F : C → C be a functor and C ∈ C an object. If F has an
initial algebra µF then:

SDinat(Hom(F−,−), Hom(C ,−)) ∼= Hom(C , µF)

Corollary
Let F be a type expression with one covariant type variable,
derivable from nonterminal F ′. Then

∀X . (F(X) → X) → X ∼= µF



From parametricity to strong dinaturality

Example
Fixpoints are not definable in System F :

∀X . (X → X) → X ∼= ∀X . (Id(X) → X) → X
∼= µ Id ∼= 0

Polymorphic identity:

∀X . X → X ∼= ∀X . (1(X) → X) → X
∼= µ 1 ∼= 1

Empty type:

∀X . X ∼= ∀X . 1 → X
∼= ∀X . (0(X) → X) → X
∼= µ 0 ∼= 0



Conclusions and Further Work
We have identified a class of types whose terms are
strongly dinatural in every parametric model.
The class is large enough to cover several important
applicatons;
– eg. Church encoding of initial algebras.
Possible directions for the future work include:
– to investigate the relationship with other formalisms (eg.

structural polymorphism [Freyd, 1993], polynomial
polymorphism [Jay, 1995], cospan diparametricity
[Eppendahl, 2005]);

– to try to find less syntactic characterization of the
suitable classes of types.


