
Is Constructive Logic relevant for
Computer Science?

Thorsten Altenkirch

University of Nottingham

Tallinn Feb 06 – p.1/16

Birth of Modern Mathematics

Isaac Newton (1642 - 1727)

1687: Philosophiae Naturalis Principia Mathematica

Tallinn Feb 06 – p.2/16

Birth of Modern Mathematics

Isaac Newton (1642 - 1727)

1687: Philosophiae Naturalis Principia Mathematica

Tallinn Feb 06 – p.2/16

Birth of Modern Mathematics

Isaac Newton (1642 - 1727)

1687: Philosophiae Naturalis Principia Mathematica
Tallinn Feb 06 – p.2/16

19/20th century: Foundations?

Frege (1848-1925) Russell (1872-1970)

Tallinn Feb 06 – p.3/16

19/20th century: Foundations?

Frege (1848-1925) Russell (1872-1970)

Tallinn Feb 06 – p.3/16

� 1925: ZF set theory

Zermelo (1871-1953) Fraenkel (1891-1965)

End of story ?

Tallinn Feb 06 – p.4/16

� 1925: ZF set theory

Zermelo (1871-1953) Fraenkel (1891-1965)

End of story ?

Tallinn Feb 06 – p.4/16

Mathematics is universal

The foundations which are

good for mathematical

reasoning within natural

sciences are equally useful

in Computer Science.

Tallinn Feb 06 – p.5/16

Constructivism?

Computer Science focusses on constructive solutions to problems.

Classical Mathematics is based on the platonic idea of truth.

Constructive Mathematics is based on the notion of evidence or
proof.

Tallinn Feb 06 – p.6/16

Constructivism?

� Computer Science focusses on constructive solutions to problems.

Classical Mathematics is based on the platonic idea of truth.

Constructive Mathematics is based on the notion of evidence or
proof.

Tallinn Feb 06 – p.6/16

Constructivism?

� Computer Science focusses on constructive solutions to problems.

� Classical Mathematics is based on the platonic idea of truth.

Constructive Mathematics is based on the notion of evidence or
proof.

Tallinn Feb 06 – p.6/16

Constructivism?

� Computer Science focusses on constructive solutions to problems.

� Classical Mathematics is based on the platonic idea of truth.

� Constructive Mathematics is based on the notion of evidence or
proof.

Tallinn Feb 06 – p.6/16

BHK: Programs are evidence

Brouwer (1881-1966) Heyting (1898-1980) Kolmogorov (1903-1987)

Tallinn Feb 06 – p.7/16

BHK: Programs are evidence

Brouwer (1881-1966) Heyting (1898-1980) Kolmogorov (1903-1987)

Tallinn Feb 06 – p.7/16

��� �� � � 	
 � � ��� � 	 � � �� � 	

, classically

The same truth table shows that

Tallinn Feb 06 – p.8/16

��� �� � � 	
 � � ��� � 	 � � �� � 	

, classically

� �� � ��� � � � � � � � � � � � �� � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

The same truth table shows that

Tallinn Feb 06 – p.8/16

��� �� � � 	
 � � ��� � 	 � � �� � 	

, classically

� �� � ��� � � � � � � � � � � � �� � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� The same truth table shows that��� � � � � � � � ��� � � � ��� � �

Tallinn Feb 06 – p.8/16

BHK semantics

Evidence for is given by pairs:

Evidence for is tagged evidence for or .

Evidence for is a program constructing evidence for
from evidence for .

Tallinn Feb 06 – p.9/16

BHK semantics

� Evidence for

� �

is given by pairs:��� � � � ! � � #" ! �

Evidence for is tagged evidence for or .

Evidence for is a program constructing evidence for
from evidence for .

Tallinn Feb 06 – p.9/16

BHK semantics

� Evidence for

� �

is given by pairs:��� � � � ! � � #" ! �

� Evidence for

��

is tagged evidence for
�

or

.$&% � % � ! � ')(* + ')(, !

Evidence for is a program constructing evidence for
from evidence for .

Tallinn Feb 06 – p.9/16

BHK semantics

� Evidence for

� �

is given by pairs:��� � � � ! � � #" ! �

� Evidence for

��

is tagged evidence for
�

or

.$&% � % � ! � ')(* + ')(, !

� Evidence for

� � �

is a program constructing evidence for

from evidence for

�

.��� � � � � ! � - !

Tallinn Feb 06 – p.9/16

��� �� � � 	
 � � ��� � 	 � � �� � 	

, constructively

The program is invertible, because the right hand sides are
patterns.

This shows that the types are isomorphic.

Tallinn Feb 06 – p.10/16

��� �� � � 	
 � � ��� � 	 � � �� � 	

, constructively

.0/ / � � ! � 1 � - � � ! � � � � 1 �

. � " ')(* ! � � ')(* � #" ! �

. � " ')(, 1 � � ' (, � #" 1 �

The program is invertible, because the right hand sides are
patterns.

This shows that the types are isomorphic.

Tallinn Feb 06 – p.10/16

��� �� � � 	
 � � ��� � 	 � � �� � 	

, constructively

.0/ / � � ! � 1 � - � � ! � � � � 1 �

. � " ')(* ! � � ')(* � #" ! �

. � " ')(, 1 � � ' (, � #" 1 �

� The program is invertible, because the right hand sides are
patterns.

This shows that the types are isomorphic.

Tallinn Feb 06 – p.10/16

��� �� � � 	
 � � ��� � 	 � � �� � 	

, constructively

.0/ / � � ! � 1 � - � � ! � � � � 1 �

. � " ')(* ! � � ')(* � #" ! �

. � " ')(, 1 � � ' (, � #" 1 �

� The program is invertible, because the right hand sides are
patterns.

� This shows that the types are isomorphic.

Tallinn Feb 06 – p.10/16

Predicate logic

Evidence for is a function which assigns to each
evidence for .

Evidence for is a pair where and .

We need dependent types!

Tallinn Feb 06 – p.11/16

Predicate logic

� Evidence for

243 / 576 8 3 is a function

9

which assigns to each : / 5

evidence for

8 :.

Evidence for is a pair where and .

We need dependent types!

Tallinn Feb 06 – p.11/16

Predicate logic

� Evidence for

243 / 576 8 3 is a function

9

which assigns to each : / 5

evidence for

8 :.

� Evidence for

; 3 / 576 8 3 is a pair

� :" < � where : / 5
and </ 8 :.

We need dependent types!

Tallinn Feb 06 – p.11/16

Predicate logic

� Evidence for

243 / 576 8 3 is a function

9

which assigns to each : / 5

evidence for

8 :.

� Evidence for

; 3 / 576 8 3 is a pair

� :" < � where : / 5
and </ 8 :.

� We need dependent types!

Tallinn Feb 06 – p.11/16

Propositions = Types

Per Martin-Löf

Martin-Löf Type Theory

Implementations: NuPRL, LEGO, ALF, COQ, AGDA, Epigram . . .

Tallinn Feb 06 – p.12/16

Propositions = Types

Per Martin-Löf

Martin-Löf Type Theory

Implementations: NuPRL, LEGO, ALF, COQ, AGDA, Epigram . . .

Tallinn Feb 06 – p.12/16

Propositions = Types

Per Martin-Löf

� Martin-Löf Type Theory

Implementations: NuPRL, LEGO, ALF, COQ, AGDA, Epigram . . .

Tallinn Feb 06 – p.12/16

Propositions = Types

Per Martin-Löf

� Martin-Löf Type Theory

� Implementations: NuPRL, LEGO, ALF, COQ, AGDA, Epigram . . .

Tallinn Feb 06 – p.12/16

=

We cannot prove , where , for an

undecided proposition .

is provable, i.e. Prime is decidable.

Indeed, the proof is the program which decides Prime.

is not provable, because Halt is undecidable.

Tallinn Feb 06 – p.13/16

=

� We cannot prove

�� > �

, where > � � � � � ?
, for an

undecided proposition

�

.

is provable, i.e. Prime is decidable.

Indeed, the proof is the program which decides Prime.

is not provable, because Halt is undecidable.

Tallinn Feb 06 – p.13/16

=

� We cannot prove

�� > �

, where > � � � � � ?
, for an

undecided proposition

�

.

� 24@ / A&B C 6 D)E FHG I @ � > D)E F G I @

is provable, i.e. Prime is decidable.

Indeed, the proof is the program which decides Prime.

is not provable, because Halt is undecidable.

Tallinn Feb 06 – p.13/16

=

� We cannot prove

�� > �

, where > � � � � � ?
, for an

undecided proposition

�

.

� 24@ / A&B C 6 D)E FHG I @ � > D)E F G I @

is provable, i.e. Prime is decidable.

Indeed, the proof is the program which decides Prime.

is not provable, because Halt is undecidable.

Tallinn Feb 06 – p.13/16

=

� We cannot prove

�� > �

, where > � � � � � ?
, for an

undecided proposition

�

.

� 24@ / A&B C 6 D)E FHG I @ � > D)E F G I @

is provable, i.e. Prime is decidable.

� Indeed, the proof is the program which decides Prime.

is not provable, because Halt is undecidable.

Tallinn Feb 06 – p.13/16

=

� We cannot prove

�� > �

, where > � � � � � ?
, for an

undecided proposition

�

.

� 24@ / A&B C 6 D)E FHG I @ � > D)E F G I @

is provable, i.e. Prime is decidable.

� Indeed, the proof is the program which decides Prime.

� 24@ / A&B C 6 J&B K C @ � > J&B K C @

is not provable, because Halt is undecidable.

Tallinn Feb 06 – p.13/16

=

� We cannot prove

�� > �

, where > � � � � � ?
, for an

undecided proposition

�

.

� 24@ / A&B C 6 D)E FHG I @ � > D)E F G I @

is provable, i.e. Prime is decidable.

� Indeed, the proof is the program which decides Prime.

� 24@ / A&B C 6 J&B K C @ � > J&B K C @

is not provable, because Halt is undecidable.

Tallinn Feb 06 – p.13/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:

Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:

Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:��

Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:�� > � > ��� > �

Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:�� > � > ��� > �

; 3 / 576 8 3

Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:�� > � > ��� > �

; 3 / 576 8 3 > 23 / 576 > 8 3

Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:�� > � > ��� > �

; 3 / 576 8 3 > 23 / 576 > 8 3

� Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:�� > � > ��� > �

; 3 / 576 8 3 > 23 / 576 > 8 3

� Negative translation

� �� > �

is translated to > � > ��� > > � �

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:�� > � > ��� > �

; 3 / 576 8 3 > 23 / 576 > 8 3

� Negative translation

� �� > �

is translated to > � > ��� > > � �
which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The classical Babelfish

Classical reasoner says: Babelfish translates to:�� > � > ��� > �

; 3 / 576 8 3 > 23 / 576 > 8 3

� Negative translation

� �� > �

is translated to > � > ��� > > � �
which is constructively provable.

� A classical reasoner is somebody who is unable to say anything
positive.

Tallinn Feb 06 – p.14/16

The Axiom of Choice ?

is provable constructively.

However, its negative translation:

is not.

There is empirical evidence that CAC is consistent.

Tallinn Feb 06 – p.15/16

The Axiom of Choice ?

� 23 / 576 ;4L / M6 N 3 L OP; 9 / 5 - M6 23 / 576 N 3 � 9 3 �

is provable constructively.

However, its negative translation:

is not.

There is empirical evidence that CAC is consistent.

Tallinn Feb 06 – p.15/16

The Axiom of Choice ?

� 23 / 576 ;4L / M6 N 3 L OP; 9 / 5 - M6 23 / 576 N 3 � 9 3 �
is provable constructively.

However, its negative translation:

is not.

There is empirical evidence that CAC is consistent.

Tallinn Feb 06 – p.15/16

The Axiom of Choice ?

� 23 / 576 ;4L / M6 N 3 L OP; 9 / 5 - M6 23 / 576 N 3 � 9 3 �
is provable constructively.

� However, its negative translation:

243 / 576 > 2L / M6 > N 3 L P OP

> 2 9 / 5 - M6 > 23 / 576 N 3 � 9 3 �

is not.

There is empirical evidence that CAC is consistent.

Tallinn Feb 06 – p.15/16

The Axiom of Choice ?

� 23 / 576 ;4L / M6 N 3 L OP; 9 / 5 - M6 23 / 576 N 3 � 9 3 �
is provable constructively.

� However, its negative translation:

243 / 576 > 2L / M6 > N 3 L P OP

> 2 9 / 5 - M6 > 23 / 576 N 3 � 9 3 �

is not.

� There is empirical evidence that CAC is consistent.

Tallinn Feb 06 – p.15/16

Summary

Tallinn Feb 06 – p.16/16

	Birth of Modern Mathematics
	19/20th century: Foundations?
	$approx $ 1925: ZF set theory
	Mathematics is emph {universal}
	Constructivism?
	BHK: Programs are evidence
	small $A wedge (B vee C)
implies (A wedge B) vee (A wedge C)$, classically
	BHK semantics
	small $A wedge (B vee C)
implies (A wedge B) vee (A wedge C)$, constructively
	Predicate logic
	Propositions = Types
	$A vee
eg A$
	The classical Babelfish {epsfysize =0.05slideheight epsfbox {babelfish.ps}}
	The Axiom of Choice ?
	Summary

