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Birth of Modern Mathematics

Isaac Newton (1642 - 1727)

1687: Philosophiae Naturalis Principia Mathematica
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19/20th century: Foundations?

Frege (1848-1925) Russell (1872-1970)
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� 1925: ZF set theory

Zermelo (1871-1953) Fraenkel (1891-1965)

End of story ?
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Mathematics is universal

The foundations which are

good for mathematical

reasoning within natural

sciences are equally useful

in Computer Science.
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Constructivism?

Computer Science focusses on constructive solutions to problems.

Classical Mathematics is based on the platonic idea of truth.

Constructive Mathematics is based on the notion of evidence or
proof.
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BHK: Programs are evidence

Brouwer (1881-1966) Heyting (1898-1980) Kolmogorov (1903-1987)
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BHK semantics

Evidence for is given by pairs:

Evidence for is tagged evidence for or .

Evidence for is a program constructing evidence for
from evidence for .
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, constructively

The program is invertible, because the right hand sides are
patterns.

This shows that the types are isomorphic.
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Predicate logic

Evidence for is a function which assigns to each
evidence for .

Evidence for is a pair where and .

We need dependent types!
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Propositions = Types

Per Martin-Löf

Martin-Löf Type Theory

Implementations: NuPRL, LEGO, ALF, COQ, AGDA, Epigram . . .
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=

We cannot prove , where , for an

undecided proposition .

is provable, i.e. Prime is decidable.

Indeed, the proof is the program which decides Prime.

is not provable, because Halt is undecidable.
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The classical Babelfish

Classical reasoner says: Babelfish translates to:

Negative translation

is translated to

which is constructively provable.

A classical reasoner is somebody who is unable to say anything
positive.
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The Axiom of Choice ?
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However, its negative translation:
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There is empirical evidence that CAC is consistent.
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