
Bit-state hashing on steroids
or

Speeding up model checking by hash table
size sweep

Juhan Ernits
TSEM 01.12.2005

What do we want to do?

 We want to check for reachability on a
structure representing a constraint system.

 (this is equivalent to) We want to check if
the behaviour of the model is included in
the behaviours of the specification

Example

Explicit state model checking

 We consider explicit state model checking.
 all control states and data states are

represented explicitly.
 As opposed to symbolic model checking

 where the states are represented by some
symbolic construct, for example BDD-s.

Ways of reducing memory

 Partial order reduction
 Lossless state compression

 Collapse compression
 Minimized automaton representation

 Lossy state compression
 bit-state hashing
 hash compaction

Collapse compression

 The state explosion is due to small
changes in many places

 Store different parts of the state space in
separate descriptors and represent the
actual state as an index to relevant state
descriptors

Minimized automaton
representation

 Build a recognizer automaton for states. All
states that have been seen lead to an
accepting state.

 The recognizer automaton is interrogated
on each step of the model checker.

 The recognizer automaton is modified
each time a new state is seen.

What is hash compaction

 A method where each state is represented
by a hash (for example 128 bits). This is
stored in a regular hash table.

 Used in Spin, Zing, Bogor, ...
 Can achieve very good coverage.

Bit-state hashing

 Let us look at how a hash table works.
 Instead of a state, store one bit.

Hash functions

 mod sucks!
 Look at Jenkins' hash funcion:

// Most hashes can be modeled
// like this:

 initialize(internal state)
 for (each text block)
 {
 combine(internal state, text block);
 mix(internal state);
 }
 return postprocess(internal state);

Hash functions 2

 Hash functions are well researched to be
as pseudorandom as possible.

 Can we do better?
 Can we encode some relevant simple

abstraction function into the hash function?

Hash table size sweep

 Start with a really small hash table size
and modify the size of the table while
keeping the hash function constant.

 Works well for synthesis tasks
 task failed with exceeding 3 GB of mem in the

explicit case;
 worked with 100 MB of memory with bit state

hashing enabled,
 but

Hash table size sweep

 Percentage of queries yielding a trace to
the desired state (not “may be”).

Hardware vs software checking

 Hardware in general has a lot of control
states and relatively few data variables

 Software has loooots of data and weird
constructs like threads, dynamic creation of
objects, garbage collection ...

 One has to be really careful when
attemting to use bit-state hashing for
software.

Ideas

 By modifying the size of the hash table we
got an answer to the query in seconds and
by using a few kilobytes for the hash table.

 The cache memory of modern processors
is 1-2 MB. This should make such sweep
really fast.

Help needed!!!

 To write an extension to Bogor (remember
John Hatcliff?)

 Experiment with hash table size sweep on
BIR examples.

 Put it all into a paper and produce a
(preferably ISISISI) publication.

