
Bit-state hashing on steroids
or

Speeding up model checking by hash table
size sweep

Juhan Ernits
TSEM 01.12.2005

What do we want to do?

 We want to check for reachability on a
structure representing a constraint system.

 (this is equivalent to) We want to check if
the behaviour of the model is included in
the behaviours of the specification

Example

Explicit state model checking

 We consider explicit state model checking.
 all control states and data states are

represented explicitly.
 As opposed to symbolic model checking

 where the states are represented by some
symbolic construct, for example BDD-s.

Ways of reducing memory

 Partial order reduction
 Lossless state compression

 Collapse compression
 Minimized automaton representation

 Lossy state compression
 bit-state hashing
 hash compaction

Collapse compression

 The state explosion is due to small
changes in many places

 Store different parts of the state space in
separate descriptors and represent the
actual state as an index to relevant state
descriptors

Minimized automaton
representation

 Build a recognizer automaton for states. All
states that have been seen lead to an
accepting state.

 The recognizer automaton is interrogated
on each step of the model checker.

 The recognizer automaton is modified
each time a new state is seen.

What is hash compaction

 A method where each state is represented
by a hash (for example 128 bits). This is
stored in a regular hash table.

 Used in Spin, Zing, Bogor, ...
 Can achieve very good coverage.

Bit-state hashing

 Let us look at how a hash table works.
 Instead of a state, store one bit.

Hash functions

 mod sucks!
 Look at Jenkins' hash funcion:

// Most hashes can be modeled
// like this:

 initialize(internal state)
 for (each text block)
 {
 combine(internal state, text block);
 mix(internal state);
 }
 return postprocess(internal state);

Hash functions 2

 Hash functions are well researched to be
as pseudorandom as possible.

 Can we do better?
 Can we encode some relevant simple

abstraction function into the hash function?

Hash table size sweep

 Start with a really small hash table size
and modify the size of the table while
keeping the hash function constant.

 Works well for synthesis tasks
 task failed with exceeding 3 GB of mem in the

explicit case;
 worked with 100 MB of memory with bit state

hashing enabled,
 but

Hash table size sweep

 Percentage of queries yielding a trace to
the desired state (not “may be”).

Hardware vs software checking

 Hardware in general has a lot of control
states and relatively few data variables

 Software has loooots of data and weird
constructs like threads, dynamic creation of
objects, garbage collection ...

 One has to be really careful when
attemting to use bit-state hashing for
software.

Ideas

 By modifying the size of the hash table we
got an answer to the query in seconds and
by using a few kilobytes for the hash table.

 The cache memory of modern processors
is 1-2 MB. This should make such sweep
really fast.

Help needed!!!

 To write an extension to Bogor (remember
John Hatcliff?)

 Experiment with hash table size sweep on
BIR examples.

 Put it all into a paper and produce a
(preferably ISISISI) publication.

