Introduction to Linear Logic

Andres Ojamaa

23.02.2006

Outline

Introduction

Classical Logic

Linear Logic

Background Syntax Informal Semantics Common Variants

Some Random Applications Synthesis of Web Services Theorem Provers Quantum Programming

Classical Sequent Calculus

Structural rules of weakening and contraction:

	Γ⊦Δ	Γ⊦Δ
	<u>Γ,</u> <i>A</i> ⊦Δ	Γ⊢A,Δ
	Г,А,А⊦∆	Γ⊦ <i>Α</i> , <i>Α</i> ,Δ
	Γ, <i>Α</i> ⊦Δ	<u>Γ</u> ⊦ <i>Α</i> ,Δ

- A fact can be used freely as many times as needed.
- ▶ What can be concluded from *A*, *A* => *B*, *A* => *C*?

Capitalistic Point of View

"A implies B" should be read as "give me *as many* A as I might need and I get you B".

Linear Logic

- Proposed by Jean-Yves Girard in 1987
- Denies the structural rules of weakening and contraction
- Assumptions as consumable resources

There are other resource-oriented logics:

- Relevance logic
- Lambek calculus

Classical Linear Logic Sequent Calculus

$$\frac{\Gamma_{1} + A, \Sigma_{1} \quad \Gamma_{2}, A + \Sigma_{2}}{\Gamma_{1}, \Gamma_{2} + \Sigma_{1}, \Sigma_{2}} \text{ cut}$$

$$\frac{\Gamma + \Sigma}{\Gamma, !A + \Sigma} \text{ weak}_{L} \qquad \frac{\Gamma + \Sigma}{\Gamma + ?A, \Sigma} \text{ weak}_{R} \qquad \frac{\Gamma, !A, !A + \Sigma}{\Gamma, !A + \Sigma} \text{ contr}_{L} \qquad \frac{\Gamma + ?A, ?A, \Sigma}{\Gamma + ?A, \Sigma} \text{ contr}_{R}$$

$$\frac{\Gamma, A, B + \Sigma}{\Gamma, A \otimes B + \Sigma} \otimes_{L} \qquad \frac{\Gamma_{1} + A, \Sigma_{1} \quad \Gamma_{2} + B, \Sigma_{2}}{\Gamma_{1}, \Gamma_{2} + A \otimes B, \Sigma_{1}, \Sigma_{2}} \otimes_{R} \qquad \frac{\Gamma + \Sigma}{\Gamma, 1 + \Sigma} \mathbf{1}_{L} \qquad -\mathbf{1}_{R}$$

$$\frac{\Gamma, A + \Sigma}{\Gamma, A \otimes B + \Sigma} \otimes_{L_{1}} \qquad \frac{\Gamma, B + \Sigma}{\Gamma, A \otimes B + \Sigma} \otimes_{L_{2}} \qquad \frac{\Gamma + A, \Sigma \quad \Gamma + B, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \qquad \text{no } \tau_{L} \qquad \overline{\Gamma + \tau, \Sigma} \quad \tau_{R}$$

$$\frac{\Gamma_{1}, A + \Sigma_{1} \quad \Gamma_{2}, B + \Sigma_{2}}{\Gamma_{1}, \Gamma_{2}, A \otimes B + \Sigma_{1}, \Sigma_{2}} \otimes_{L} \qquad \frac{\Gamma + A, B, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \qquad \mathbf{no } \tau_{L} \qquad \overline{\Gamma + \tau, \Sigma} \quad \tau_{R}$$

$$\frac{\Gamma, A + \Sigma \quad \Gamma, B + \Sigma}{\Gamma, A \otimes B + \Sigma_{1}, \Sigma_{2}} \otimes_{L} \qquad \frac{\Gamma + A, B, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \qquad \mathbf{1}_{L} \qquad \frac{\Gamma + \Sigma}{\Gamma + L, \Sigma} \perp_{R}$$

$$\frac{\Gamma, A + \Sigma \quad \Gamma, B + \Sigma}{\Gamma, A \otimes B + \Sigma} \otimes_{L} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \qquad \mathbf{1}_{L} \qquad \frac{\Gamma + \Sigma}{\Gamma + L, \Sigma} \perp_{R}$$

$$\frac{\Gamma, A + \Sigma \quad \Gamma, B + \Sigma}{\Gamma, A \otimes B + \Sigma} \otimes_{L} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \qquad \mathbf{1}_{L} \qquad \frac{\Gamma + D}{\Gamma + L, \Sigma} \otimes_{L} \text{no } \mathfrak{0}_{R}$$

$$\frac{\Gamma, A + \Sigma \quad \Gamma, B + \Sigma}{\Gamma, 1 + \Sigma} !_{L} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \qquad \frac{\Gamma, A + \Sigma}{\Gamma, 1 + 2} !_{L} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} ?_{R}$$

$$\frac{\Gamma, A + \Sigma}{\Gamma, 1 + \Sigma} !_{L} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} ?_{R}$$

$$\frac{\Gamma, A + \Sigma}{\Gamma, 1 + \Sigma} !_{L} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} ?_{R} \qquad \frac{\Gamma + A, \Sigma}{\Gamma + A, \Sigma} ?_{R}$$

$$CLL sequent calculus$$

Linear Connective Soup

Multiplicative conjunction

- ▶ Operator: ⊗
- Denotes simultaneous occurrence of resources
- Unit: 1 (1 \otimes $A = A = A \otimes$ 1)

Multiplicative disjunction

- Operator: 8
- Represents simultaneous goals that must be reached
- ► Unit: ⊥

Linear Connective Soup

Additive conjunction

- Operator: &
- Internal choice, represents alternative occurrence of resources
- ► Unit: ⊤

Additive disjunction

- Operator: ⊕
- External choice, represents a choice over which one has no control
- Unit: 0

Linear Implication and Exponentials

The proposition $A \multimap B$ consumes resource A to reach resource B.

- Reuse is allowed for propositions using "of course" operator: !. (contraction)
- A fact can be weakened by additional conclusion ?A ("why not" operator).

Negation

Atomic formula:

- Negation of A is A[⊥]
- Negation of $A^{\perp\perp}$ is A

Negation of non-atomic formulae is defined using the De Morgan rule:

- $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$
- $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$
- $(A \otimes B)^{\perp} = A^{\perp} \oplus B^{\perp}$
- $(A \oplus B)^{\perp} = A^{\perp} \otimes B^{\perp}$

Linear implication $A \multimap B$ is defined as a shorthand for $A^{\perp} \otimes B$

The Linear Menu

Menu a 75 Frs

Entree:

- quiche lorraine ou
- saumon fume

et Plat:

- pot-au-feu ou
- filet de canard

et

- Fruit selon saison (banane ou raisin ou oranges ou ananas) ou
- Dessert au choix (mistere, glace, tarte aux pommes)

 $75FF^{\perp} \otimes (Q \& S) \otimes (P \& F) \otimes ((B \oplus R \oplus O \oplus A) \& (M \& G \& T))$

Common Variants of Linear Logic

- MLL Multiplicative LL
 - Only \otimes and \otimes are allowed
 - Decidable, NP-complete (Max I. Kanovich)
- MALL Multiplicative Additive LL
 - Adds additive connectives (⊕, ⊗) to MLL
 - Decidable, PSPACE-complete (P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar)
- MELL Multiplicative Exponential LL
 - Adds exponential operators to MLL
 - The decision problem is open
- MAELL Multiplicative Additive Exponential LL
 - Undecidable

There are also first- and higher-order extensions of LL.

Synthesis of Web Services

- How to find solutions effectively?
- General description of a service:

resources \otimes constraints \otimes precontitions \otimes !inputs $-\infty$ (effects \otimes !outputs) \oplus exception

Example:

 $have_processing_time\otimes!x_is_known\otimes!y_is_known \\ -\circ!z_is_known \oplus exception$

Synthesis of Web Services

Using admissible rules

The extralogical axiom describing a service:

 $a \otimes ! i \multimap (f \otimes ! o) \oplus e$

Where:

- a multiplicative conjunction of resources, constraints and preconditions
- i multiplicative conjunction of inputs
- f multiplicative conjunction of effects
- o multiplicative conjunction of outputs
- e exception

Synthesis of Web Services

Using admissible rules

Admissible derivation rule:

$$\frac{\vdash a \otimes ! i \multimap f \otimes ! o \qquad \Gamma \vdash a \qquad \Sigma \vdash ! i}{\Gamma, \Sigma \vdash f \otimes ! u}$$

Where *u* consists of something from *i*, *o*.

What about the complexity of the proof-search?

Theorem Provers: linprove

- Searches a cut-free proof of the given two-sided sequent of first-order linear logic
- ► Written in SICStus Prolog (≈ 1400 LOC)
- Online demo: http://bach.istc.kobe-u.ac.jp/llprover/
- Author: Naoyuki Tamura

Example proof:

Linear Logic Theorem Provers

- Inprove prover for propositional linear logic
 - ▶ Written in Scheme (≈ 4000 LOC)
 - Proof Strategies in Linear Logic. 1994
 - Author: Tanel Tammet
- Forum
 - Based on intuitionistic linear logic
 - Designed by Dale Miller
- RAPS Resource-Aware Planning System
 - LL planner to support reasoning over Web service composition problems in propositional and first-order LL
 - Written in Java
 - Peep Küngas

QML is a functional language for quantum computations developed by T. Altenkirch and J. Grattage.

- Based on strict linear logic
 - SLL is an extension of LL with structural rule of contraction.
- Quantum control and quantum data
- Important issue: control of decoherence

Summary

- "I'm not a linear logician." Girard
- Linear Logic provides useful tools for different applications
- Expressive power vs complexity