
���������	
�

Ando Saabas

IoC theory seminar
23.03.06

��
����

� Design by contract
� JML
� JML tools
� BCSL

������ �����
���

� A program (a class) and its clients should have a “contract"
with each other
� The client must guarantee certain conditions before calling

a method defined by the class
� In return the class guarantees certain properties that will

hold after the call
� One can avoid constantly checking arguments
� Makes it easier to assign blame

���

� JML is a formal behavioral interface specification language for
Java.

� Started at Iowa State University by the group of Gary Leavens
� It allows one to specify both the syntactic interface of Java

code and its behavior.
� JML uses Java's expression syntax to write the predicates

used in assertions
� Makes it easer easier for programmers to learn JML

� Java's expressions are extended with various specification
constructs, such as quantifiers

����
�
����

� JML specifications can be
� written in separate files
� contained in annotations, which are comments like:

//@ …

or

/*@ …
@ …
@*/

�����
���

public class IntMathOps {
/*@ public normal_behavior
@ requires y >= 0;
@ assignable \nothing;
@ ensures 0 <= \result
@ && \result * \result <= y
@ && (y < (\result + 1) * (\result + 1));
@*/

public static int isqrt(int y) {
return (int) Math.sqrt(y);

}
}

Assumes argument is non-negativeComputes and returns square rootClass

Gets square root approximationPasses non-negative numberUser

RightsObligations

	����������
������
��������
����

� Invariants. A property that should always be true of an
object’s state (when control is not inside the object’s
methods).

� Invariants allow you to define:
� Acceptable states of an object, and
� Consistency of an object’s state.

//@ public invariant !name.equals(“”) &&
weight >= 0;

	�����������
�������
��������
����

� Model Fields
� Do not have to have an implementation.
� For purposes of the specification, it is treated like any other

Java field.
� represents clause can be used to say how a model field

is related to an actual field
� History constraints – states how values can change between

earlier and later publicly-visible states
� public instance constraint MAX_SIZE ==
\old(MAX_SIZE);

��
��� ���������
����

� Pre- and postconditions
� requires and ensures

requires !stack.isempty();

ensures \result == stack.first()

� Assignable clause
� Gives frame conditions: allows to assign only to locations

given in the assignable clause.
� assignable stack;

��
�������������
����

� normal_behavior keyword notes that method should finish
normally

� behavior keyword notes that there can be an exception
thrown

� exceptional_behavior states that the method must
always terminate with an exception

� signals clause can be used to describe under what
condition an exception can be thrown

� normal_behaviour == signals
(java.lang.Exception) false

� exceptional_behaviour == ensures false

����
���������
�������������
����

� A method must be called in a state (prestate) where the
method's precondition is satisfied

� If a method is called in a proper pre-state, then
� if the method terminates normally (without throwing an

exception), then in the termination state (normal poststate),
its normal postcondition must be satisfied.

� If the method terminates by throwing an exception, then in
the termination state (exceptional post-state), then the
exceptional post-state must satisfy the corresponding
exceptional postconditions

� �����

public interface BoundedThing {
//@ public model instance int MAX_SIZE;
//@ public model instance int size;

/*@
public instance invariant MAX_SIZE > 0;
public instance invariant 0 <= size && size <= MAX_SIZE;
public instance constraint MAX_SIZE == \old(MAX_SIZE);@*/

/*@
public normal_behavior
ensures \result == MAX_SIZE; @*/
public /*@ pure @*/ int getSizeLimit();
/*@
public normal_behavior
ensures \result <==> size == 0; @*/
public /*@ pure @*/ boolean isEmpty();

/*@ public normal_behavior
ensures \result <==> size == MAX_SIZE;

@*/
public /*@ pure @*/ boolean isFull();

/*@ also
public behavior
assignable \nothing;
ensures \result instanceof BoundedThing

&& size == ((BoundedThing)\result).size;
signals_only CloneNotSupportedException;

@*/
public Object clone ()

throws CloneNotSupportedException;
}

��
�������������
����

� Purity of methods
� Specified with the modifier pure
� Refines the following:
behavior
assignable \nothing

� It must also be provably terminating
� Loop variant and invariant:

� maintaining predicate
� decreasing expression

public abstract class SumArrayLoop {
//@ requires a != null;
//@ requires (\sum int j; 0 <= j && j < a.length; a[j]) <=
Long.MAX_VALUE;

//@ requires (\sum int j; 0 <= j && j < a.length; a[j]) >=
Long.MIN_VALUE;

//@ assignable \nothing;
//@ ensures \result == (\sum int j; 0 <= j && j < a.length; a[j]);

public static long sumArray(int [] a) {
long sum = 0;
int i = a.length;
/*@ maintaining -1 <= i && i <= a.length;

@ maintaining sum
@ == (\sum int j; i <= j && 0 <= j && j < a.length; a[j]);
@ decreasing i; @*/

while (--i >= 0) {
sum += a[i];

}
return sum;

}
}

������
����

� In JML, a subclass inherits specifications such as
preconditions, postconditions, and invariants from its
superclasses and interfaces that it implements.

� An interface also inherits specifications of the interfaces that it
extends.

�
�������
���!� � ���������

� \result result of a method call
� A ==> B A implies B
� A <==> B A if and only if B
� \old(E) value of E in pre-state
� \forall and \exists - universal and existential quantifiers

� (\forall int i,j; 0 <= i && i < j && j < 10; a[i] <
a[j])

� \max, \min, \product, and \sum
� (\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i) == 1 * 2 * 3 * 4
(\max int i; 0 <= i && i < 5; i) == 4
(\min int i; 0 <= i && i < 5; i-1) == -1

�
��������
����!��� ���������

� \num_of, returns the number of values for its variables for
which the range and the expression in its body are true
� (\num_of T x; R(x); P(x)) == (\sum T x; R(x) &&

P(x); 1L)

� Set comprehension
� new JMLObjectSet {Integer i | myIntSet.has(i) &&

i != null && 0 <= i.getInteger() &&
i.getInteger() <= 10 }

� \duration(mc), describes the specified maximum number of
virtual machine cycle times to execute the method call

� \elemtype, which returns the most-specific static type shared
by all elements of its array argument
� \elemtype(\type(int[])) is \type(int)

�
��������
����!��� ���������

� \fresh, asserts that objects were freshly allocated (not
allocated in the pre-state)

� \nonnullelements ==

� myArray != null && (\forall int i; 0 <= i && i <
myArray.length; myArray[i] != null)

� \typeof(E), returns the most-specific dynamic type of an
expression's value (null means unspecified)

� <:, compares two reference types

� \type, marks types in expressions.
� \typeof(myObj) <: \type(PlusAccount)

�
��������
����!��� ���������

� \invariant_for(o), true when its argument satisfies the
invariant for its static type
� \invariant_for((MyObj)o)

� \is_initialized(o)

� \lockset, set of locks held by current thread

� \not_modified, asserts that the values of objects are the
same in pre- and poststates

� \reach(x), the set of all objects accessible through x

� \space(o), the amount of heap space allocated to o

� \working_space(o.m(..)), describes the maximum amount
of heap space used by the method call

� �����

public class Purse {
final int MAX_BALANCE;
int balance;
//@ invariant 0 <= balance && balance <= MAX_BALANCE;

byte[] pin;
/*@ invariant pin != null && pin.length == 4
@ && (\forall int i; 0 <= i && i < 4;
@ 0 <= pin[i] && pin[i] <= 9);
@*/

/*@ requires amount >= 0;
@ assignable balance;
@ ensures balance == \old(balance) - amount

@ && \result == balance;
@ signals (PurseException) balance == \old(balance);
@*/

� ���������
"
int debit(int amount) throws PurseException {

if (amount <= balance) {
balance -= amount; return balance;}

else {
throw new PurseException("overdrawn by" + amount);}

}

/*@ requires 0 < mb && 0 <= b && b <= mb
@ && p != null && p.length == 4
@ && (\forall int i; 0 <= i && i < 4;
@ 0 <= p[i] && p[i] <= 9);
@ assignable MAX_BALANCE, balance, pin;
@ ensures MAX_BALANCE == mb && balance == b
@ && (\forall int i; 0 <= i && i < 4; p[i]==pin[i]);
@*/

Purse(int mb, int b, byte[] p) {
MAX_BALANCE = mb; balance = b; pin = (byte[])p.clone();

}
}

����
����

� Runtime assertions checking
� JML compiler jmlc

� Testing
� Jmlunit combines runtime assertion checking with unit

testing
� Tools for generating specifications

� Daikon infers likely invariants by observing runtime
behavior of a program

� Jmlspec can produce a skeleton of a specification file from
Java source

� Documentation
� Jmldoc produces browsable HTML from JML specifications

����
����

� Static checking and verification
� ESC/Java can automatically detect certain common errors

and check relatively simple assertions.
� JACK, similar to ESC/Java
� LOOP, translates JML annotated code to PVS proof

obligations
� CHASE, checks some aspects of frame conditions

�	
�

� Motivation: bringing PCC to Java
� If one wants specify the behavior of bytecode, there has to be

an assertion language for it
� BCSL, or Bytecode Specification Language, is meant as the

low-level counterpart of JML
� Being designed in INRIA Sophia-Antipolis

� BCSL is a representative subset of JML, including
� Class invariants, history constraints
� Model/ghost variables
� Method pre, post, exceptional conditions, frame conditions
� Inner method specifications (loop invariants)
� Expressions from Java (field access etc.)
� Specification operators \typed, \type, \elemtype,
\old, \result

� It includes the following features JML lacks:
� Loop frame condition, which declares the locations that can

be modified during a loop
� Stack expressions cntr for stack counter and st(AE)

standing for a stack element at position AE.

	�������������
�����

� Class files have an attribute table
� It can have an unlimited number of attributes
� A Java virtual machine implementation is required to

silently attributes in the attributes table it doesn’t recognize
� So annotations can be included as extra attributes

� Java compilers generate Line Number Table and Local
Variable Table attributes for class files
� A JML compiler can take an existing classfile, and infer

from the LNT and LVT how to associate the annotations
with the class.

#���������

� http://www.cs.iastate.edu/~leavens/JML/
contains documentation, relevant papers and
links to tools.

