
Motivation
Our Results
Conclusions

Side Effect Monad, its Equational Theory
and Applications

O. Shkaravska

Institute of Cybernetics at TUT

Seminar, 2005

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Outline

1 Motivation
Adding Imperative Features to Functional Programs
Previous Works

2 Our Results
Categorical Semantics Of View-Update Problem

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Outline

1 Motivation
Adding Imperative Features to Functional Programs
Previous Works

2 Our Results
Categorical Semantics Of View-Update Problem

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Pure Languages

Pure functional languages do not subsume:

variable assignments x := 2,

field updates x .tail := another_list

The example stolen from G. Plotkin’s talk

function Sq(x : int) : int
return x ∗ x
end

Meaning of Sq

JintK = N

JSqK = N → N

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Pure Languages

Pure functional languages do not subsume:

variable assignments x := 2,

field updates x .tail := another_list

The example stolen from G. Plotkin’s talk

function Sq(x : int) : int
return x ∗ x
end

Meaning of Sq

JintK = N

JSqK = N → N

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Pure Languages

Pure functional languages do not subsume:

variable assignments x := 2,

field updates x .tail := another_list

The example stolen from G. Plotkin’s talk

function Sq(x : int) : int
return x ∗ x
end

Meaning of Sq

JintK = N

JSqK = N → N

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Pure Languages

Absence of side-effects: Advantages

Convenient reasoning about pure FL, especially CBV.
Example: heap-aware type systems.
We use functional structures to verify heap consumption
by a bytecode.

Absence of side-effects: Disadvantages

One often needs to update fields ...

CBV: unefficient usage of heap space

To Combination!

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Pure Languages

Absence of side-effects: Advantages

Convenient reasoning about pure FL, especially CBV.
Example: heap-aware type systems.
We use functional structures to verify heap consumption
by a bytecode.

Absence of side-effects: Disadvantages

One often needs to update fields ...

CBV: unefficient usage of heap space

To Combination!

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Pure Languages

Absence of side-effects: Advantages

Convenient reasoning about pure FL, especially CBV.
Example: heap-aware type systems.
We use functional structures to verify heap consumption
by a bytecode.

Absence of side-effects: Disadvantages

One often needs to update fields ...

CBV: unefficient usage of heap space

To Combination!

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Pure Languages

Absence of side-effects: Advantages

Convenient reasoning about pure FL, especially CBV.
Example: heap-aware type systems.
We use functional structures to verify heap consumption
by a bytecode.

Absence of side-effects: Disadvantages

One often needs to update fields ...

CBV: unefficient usage of heap space

To Combination!

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Impure Language =
Pure Language + Side Effects

Another example stolen from G. Plotkin’s talk

function Sq(x : int) : int
y := 3
return x ∗ x
end

Meaning of Sq II

JSqK = N × S → N × S
where S = N

Loc

Equivalently JSqK = N → (N × S)S

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Impure Language =
Pure Language + Side Effects

Another example stolen from G. Plotkin’s talk

function Sq(x : int) : int
y := 3
return x ∗ x
end

Meaning of Sq II

JSqK = N × S → N × S
where S = N

Loc

Equivalently JSqK = N → (N × S)S

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Impure Language =
Pure Language + Side Effects

Another example stolen from G. Plotkin’s talk

function Sq(x : int) : int
y := 3
return x ∗ x
end

Meaning of Sq II

JSqK = N × S → N × S
where S = N

Loc

Equivalently JSqK = N → (N × S)S

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Impure Languages for Databases?

Intuition behind this Idea

The current content of the data Base is a state.

Programming with D-Bases

is a functional programming with side effects:
select and update operations and functions on data.

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Impure Languages for Databases?

Intuition behind this Idea

The current content of the data Base is a state.

Programming with D-Bases

is a functional programming with side effects:
select and update operations and functions on data.

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Outline

1 Motivation
Adding Imperative Features to Functional Programs
Previous Works

2 Our Results
Categorical Semantics Of View-Update Problem

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory

Sq : N → N

becomes
Sq : N → Tstate(N),

with Tstate(N) = (N × S)S

Div : N → N

becomes
Div : N → TException(N),
with TException(N) = N + E

P : A → B
becomes
P : A → T (B)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory

Sq : N → N

becomes
Sq : N → Tstate(N),

with Tstate(N) = (N × S)S

Div : N → N

becomes
Div : N → TException(N),
with TException(N) = N + E

P : A → B
becomes
P : A → T (B)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory

Sq : N → N

becomes
Sq : N → Tstate(N),

with Tstate(N) = (N × S)S

Div : N → N

becomes
Div : N → TException(N),
with TException(N) = N + E

P : A → B
becomes
P : A → T (B)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory

Sq : N → N

becomes
Sq : N → Tstate(N),

with Tstate(N) = (N × S)S

Div : N → N

becomes
Div : N → TException(N),
with TException(N) = N + E

P : A → B
becomes
P : A → T (B)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Composition for “pure” programs

P1 : A → B P2 : B → C
compose to
P1; P2 = P2 ◦ P1 : A → C

Composition for monadic programs

Monadic programs = Kleisli arrows.
P1 : A → T (B) P2 : B → T (C)
compose to
P1; P2∗ = P2 • P1 : A → T (C)

Additional machinery

_∗ ::
(

f : A → T (B)
)

7→
(

f ∗ : T (A) → T (B)
)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Composition for “pure” programs

P1 : A → B P2 : B → C
compose to
P1; P2 = P2 ◦ P1 : A → C

Composition for monadic programs

Monadic programs = Kleisli arrows.
P1 : A → T (B) P2 : B → T (C)
compose to
P1; P2∗ = P2 • P1 : A → T (C)

Additional machinery

_∗ ::
(

f : A → T (B)
)

7→
(

f ∗ : T (A) → T (B)
)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Composition for “pure” programs

P1 : A → B P2 : B → C
compose to
P1; P2 = P2 ◦ P1 : A → C

Composition for monadic programs

Monadic programs = Kleisli arrows.
P1 : A → T (B) P2 : B → T (C)
compose to
P1; P2∗ = P2 • P1 : A → T (C)

Additional machinery

_∗ ::
(

f : A → T (B)
)

7→
(

f ∗ : T (A) → T (B)
)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Associativity

P3 • (P2 • P1) = (P3 • P2) • P1

means
(P1; P2∗); P3∗ = P1; (P2; P3∗)∗

This condition is assured by

(f ∗; g∗) = (f ; g∗)∗

P1; (P2; P3∗)∗ = P1; (P2∗; P3∗) = (P1; P2∗); P3∗

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Associativity

P3 • (P2 • P1) = (P3 • P2) • P1

means
(P1; P2∗); P3∗ = P1; (P2; P3∗)∗

This condition is assured by

(f ∗; g∗) = (f ; g∗)∗

P1; (P2; P3∗)∗ = P1; (P2∗; P3∗) = (P1; P2∗); P3∗

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Associativity

P3 • (P2 • P1) = (P3 • P2) • P1

means
(P1; P2∗); P3∗ = P1; (P2; P3∗)∗

This condition is assured by

(f ∗; g∗) = (f ; g∗)∗

P1; (P2; P3∗)∗ = P1; (P2∗; P3∗) = (P1; P2∗); P3∗

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Associativity

P3 • (P2 • P1) = (P3 • P2) • P1

means
(P1; P2∗); P3∗ = P1; (P2; P3∗)∗

This condition is assured by

(f ∗; g∗) = (f ; g∗)∗

P1; (P2; P3∗)∗ = P1; (P2∗; P3∗) = (P1; P2∗); P3∗

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Identities

Why do we need the following map?

ηA : A → T (A)

(BTW, an element of T (A) is called a computation)
As a respectable programming language our “pure”, original,
one, has a program-which-do-nothing:

P : A → B
P ◦ idA = P that is idA; P = P
idB ◦ P = P that is P; idB = P

What should be identities for the monadic langauge?
A A is A → T (A)

P : A → T (B)
P • ηA = P that is ηA; P∗ = P
ηB • P = P that is P; (ηB)∗ = P

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Identities

Why do we need the following map?

ηA : A → T (A)

(BTW, an element of T (A) is called a computation)
As a respectable programming language our “pure”, original,
one, has a program-which-do-nothing:

P : A → B
P ◦ idA = P that is idA; P = P
idB ◦ P = P that is P; idB = P

What should be identities for the monadic langauge?
A A is A → T (A)

P : A → T (B)
P • ηA = P that is ηA; P∗ = P
ηB • P = P that is P; (ηB)∗ = P

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Identities

Why do we need the following map?

ηA : A → T (A)

(BTW, an element of T (A) is called a computation)
As a respectable programming language our “pure”, original,
one, has a program-which-do-nothing:

P : A → B
P ◦ idA = P that is idA; P = P
idB ◦ P = P that is P; idB = P

What should be identities for the monadic langauge?
A A is A → T (A)

P : A → T (B)
P • ηA = P that is ηA; P∗ = P
ηB • P = P that is P; (ηB)∗ = P

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Kleisli Triple

Definition

(T , η, _∗) : η∗A = idT (A)

ηA; f ∗ = f
(f ∗; g∗) = (f ; g∗)∗

Example: Side-Effects

T (A) = (A × S)S

ηA : a 7→ λ s : S. (a, s)
(f : A → T (B)) 7→ (f ∗ : T (A) → T (B))
s. t. f ∗(c) == λ s : S. let (a, s′) = c(s) in f (a)(s′)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Kleisli Triple

Definition

(T , η, _∗) : η∗A = idT (A)

ηA; f ∗ = f
(f ∗; g∗) = (f ; g∗)∗

Example: Side-Effects

T (A) = (A × S)S

ηA : a 7→ λ s : S. (a, s)
(f : A → T (B)) 7→ (f ∗ : T (A) → T (B))
s. t. f ∗(c) == λ s : S. let (a, s′) = c(s) in f (a)(s′)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Strength

tA, B : A × T (B) → T (A × B)

Compare a “simple” let
and a let with nonlinear usage of variables.

Example: Side-Effects

T (A) = (A × S)S

t(a, c) == λ s : S. let (b, s′) = c(s) in
(

(a, b), s′

)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Strength

tA, B : A × T (B) → T (A × B)

Compare a “simple” let
and a let with nonlinear usage of variables.

Example: Side-Effects

T (A) = (A × S)S

t(a, c) == λ s : S. let (b, s′) = c(s) in
(

(a, b), s′

)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Axiomatics

Side-Effects

S = V Loc

sel(upd(a, loc, v), loc) = v
upd(a, loc, sel(a, loc)) = a
upd(upd(a, loc, v), loc, v ′) = upd(a, loc, v ′)
upd(upd(a, loc, v), loc′, v ′) = upd(upd(a, loc′, v ′), loc, v),
where loc 6= loc′

Positive Subtyping

get(put(c, a)) = a
put(c, get(c)) = c
put(put(c, a), a′) = put(c, a′)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

Axiomatics

Side-Effects

S = V Loc

sel(upd(a, loc, v), loc) = v
upd(a, loc, sel(a, loc)) = a
upd(upd(a, loc, v), loc, v ′) = upd(a, loc, v ′)
upd(upd(a, loc, v), loc′, v ′) = upd(upd(a, loc′, v ′), loc, v),
where loc 6= loc′

Positive Subtyping

get(put(c, a)) = a
put(c, get(c)) = c
put(put(c, a), a′) = put(c, a′)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine
the corresponding state monads, (C × (−))C and (A × (−))A.
A total lens l is a pair of maps, get,

l ր: C → A

and putback,
l ց: C × A → C.

A lens is called very well behaved if its components subject to
three axioms:

l ց (l ր c, c) = c (GetPut)
l ր (l ց (a, c)) = a (PutGet)
l ց (a′, l ց (a, c)) = l ց (a′, c) (PutPut)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine
the corresponding state monads, (C × (−))C and (A × (−))A.
A total lens l is a pair of maps, get,

l ր: C → A

and putback,
l ց: C × A → C.

A lens is called very well behaved if its components subject to
three axioms:

l ց (l ր c, c) = c (GetPut)
l ր (l ց (a, c)) = a (PutGet)
l ց (a′, l ց (a, c)) = l ց (a′, c) (PutPut)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine
the corresponding state monads, (C × (−))C and (A × (−))A.
A total lens l is a pair of maps, get,

l ր: C → A

and putback,
l ց: C × A → C.

A lens is called very well behaved if its components subject to
three axioms:

l ց (l ր c, c) = c (GetPut)
l ր (l ց (a, c)) = a (PutGet)
l ց (a′, l ց (a, c)) = l ց (a′, c) (PutPut)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine
the corresponding state monads, (C × (−))C and (A × (−))A.
A total lens l is a pair of maps, get,

l ր: C → A

and putback,
l ց: C × A → C.

A lens is called very well behaved if its components subject to
three axioms:

l ց (l ր c, c) = c (GetPut)
l ր (l ց (a, c)) = a (PutGet)
l ց (a′, l ց (a, c)) = l ց (a′, c) (PutPut)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Adding Imperative Features to Functional Programs
Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine
the corresponding state monads, (C × (−))C and (A × (−))A.
A total lens l is a pair of maps, get,

l ր: C → A

and putback,
l ց: C × A → C.

A lens is called very well behaved if its components subject to
three axioms:

l ց (l ր c, c) = c (GetPut)
l ր (l ց (a, c)) = a (PutGet)
l ց (a′, l ց (a, c)) = l ց (a′, c) (PutPut)

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Categorical Semantics Of View-Update Problem

Outline

1 Motivation
Adding Imperative Features to Functional Programs
Previous Works

2 Our Results
Categorical Semantics Of View-Update Problem

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Categorical Semantics Of View-Update Problem

Categorical Semantics
Of View-Update Problem

Theorem. Given a very well behaved lens l, one can construct
a functor from Kl(TA) onto Kl(TC).

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Conclusions

Programming over data bases may be considered as
functional programming with side effects

A very-well behavied lens defines a map of Kleisli
categories

Future Work
To which extend aur assumption is correct? What can it
bring to data base world?
Very-well behavied lens defines a monad morphism

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Conclusions

Programming over data bases may be considered as
functional programming with side effects

A very-well behavied lens defines a map of Kleisli
categories

Future Work
To which extend aur assumption is correct? What can it
bring to data base world?
Very-well behavied lens defines a monad morphism

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Conclusions

Programming over data bases may be considered as
functional programming with side effects

A very-well behavied lens defines a map of Kleisli
categories

Future Work
To which extend aur assumption is correct? What can it
bring to data base world?
Very-well behavied lens defines a monad morphism

Shkaravska Side-effect Monad



Motivation
Our Results
Conclusions

Conclusions

Programming over data bases may be considered as
functional programming with side effects

A very-well behavied lens defines a map of Kleisli
categories

Future Work
To which extend aur assumption is correct? What can it
bring to data base world?
Very-well behavied lens defines a monad morphism

Shkaravska Side-effect Monad


	Motivation
	Adding Imperative Features to Functional Programs
	Previous Works

	Our Results
	Categorical Semantics Of View-Update Problem

	Conclusions

