Side Effect Monad, its Equational Theory
and Applications

O. Shkaravska

Institute of Cybernetics at TUT

Seminar, 2005

Shkaravska Side-effect Monad

Outline

Q Motivation
@ Adding Imperative Features to Functional Programs
@ Previous Works

9 Our Results
@ Categorical Semantics Of View-Update Problem

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Outline

9 Motivation
@ Adding Imperative Features to Functional Programs

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Pure Languages

Pure functional languages do not subsume:
@ variable assignments x := 2,
@ field updates x.tail := another_list

Shkaravska Side-effect Monad

Motivation

Adding Imperative Features to Functional Programs

Previous Works

Pure Languages

Pure functional languages do not subsume:
@ variable assignments x := 2,
@ field updates x.tail := another_list

The example stolen from G. Plotkin’s talk

function Sq(x:int):int
return X % X
end

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Pure Languages

Pure functional languages do not subsume:
@ variable assignments x := 2,
@ field updates x.tail := another_list

The example stolen from G. Plotkin’s talk

function Sq(x:int):int
return X * X
end

Meaning of Sq

[int] =N

[Sal=N— N

o

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Pure Languages

Absence of side-effects: Advantages
Convenient reasoning about pure FL, especially CBV.

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Pure Languages

Absence of side-effects: Advantages

Convenient reasoning about pure FL, especially CBV.
Example: heap-aware type systems.

We use functional structures to verify heap consumption
by a bytecode.

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Pure Languages

Absence of side-effects: Advantages

Convenient reasoning about pure FL, especially CBV.
Example: heap-aware type systems.

We use functional structures to verify heap consumption
by a bytecode.

A\

Absence of side-effects: Disadvantages
@ One often needs to update fields ...
@ CBV: unefficient usage of heap space

\

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Pure Languages

Absence of side-effects: Advantages

Convenient reasoning about pure FL, especially CBV.
Example: heap-aware type systems.

We use functional structures to verify heap consumption
by a bytecode.

A\

Absence of side-effects: Disadvantages

@ One often needs to update fields ...
@ CBV: unefficient usage of heap space

\

To Combination!

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Impure Language =

Pure Language + Side Effects

Another example stolen from G. Plotkin’s talk

function Sq(x:int):int
y:=3

return X * X

end

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Impure Language =

Pure Language + Side Effects

Another example stolen from G. Plotkin’s talk

function Sq(x:int):int
y:=3

return X * X

end

'

Meaning of Sq Il

[Sq] =NxS — NxS
where S = NLoc

-

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Impure Language =

Pure Language + Side Effects

Another example stolen from G. Plotkin’s talk

function Sq(x:int):int
y:=3

return X * X

end

'

Meaning of Sq Il

[Sq] =NxS — NxS
where S = NLoc

Equivalently [Sq] =N — (N xS)S

-

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Impure Languages for Databases?

Intuition behind this |dea
The current content of the data Base is a state.

Shkaravska Side-effect Monad

Motivation Adding Imperative Features to Functional Programs

Previous Works

Impure Languages for Databases?

Intuition behind this |dea
The current content of the data Base is a state.

Programming with D-Bases

is a functional programming with side effects:
select and update operations and functions on data.

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative F to Functional Programs

Previous Works

Outline

9 Motivation

@ Previous Works

ide-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory
Sq:N— N
becomes
Sqg:N— Tstate(N)’

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory

Sq:N— N Div:N— N
becomes becomes
Sq: N — Tstate(N), Div:N— TExceptiOn(N)’

With Tsae(N) = (N x S)S with Teception(N) = N+ E

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

E. Moggi: Programs with Monads

Kleisli Kategory

Sq:N— N Div:N— N
becomes becomes
Sq: N — Tstate(N), Div:N— TExceptiOn(N)’

With Tsae(N) = (N x S)S with Teception(N) = N+ E

P:A— B
becomes
P:A— T(B)

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Composition for Programs with Monads

Composition for “pure” programs

P1:A— B P2:B— C
compose to
P1,P2=P20oP1: A— C

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Composition for Programs with Monads

Composition for “pure” programs

P1:A— B P2:B— C
compose to
P1,P2=P20oP1: A— C

'

Composition for monadic programs

Monadic programs = Kleisli arrows.
P1:A— T(B) P2:B— T(C)
compose to
P1,P2* =P2ePl: A— T(C)

!

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs
Previous Works

Composition for Programs with Monads

Composition for “pure” programs

P1:A— B P2:B— C

compose to
P1,P2=P20oP1: A— C

'

Composition for monadic programs

Monadic programs = Kleisli arrows.

P1:A— T(B) P2:B— T(C)
compose to

P1,P2* =P2ePl: A— T(C)

Additional machinery

ko (f :A—>T(B)) — (f* 1 T(A) —>T(B))

!

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Composition for Programs with Monads

Associativity

P3e(P2eP1)=(P3eP2)eP1

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Composition for Programs with Monads

Associativity

P3e(P2eP1)=(P3eP2)eP1

means
(P1;,P2%);P3* =P1;(P2;P3")"

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Composition for Programs with Monads

Associativity

P3e(P2eP1)=(P3eP2)eP1

means
(P1;,P2%);P3* =P1;(P2;P3")"

This condition is assured by

(f;9%) = (f;g")

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Composition for Programs with Monads

Associativity

P3e(P2eP1)=(P3eP2)eP1

means
(P1;,P2%);P3* =P1;(P2;P3")"

This condition is assured by

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Identities

Why do we need the following map?
na:A—T(A)
(BTW, an element of T (A) is called a computation)

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Identities

Why do we need the following map?
na:A—T(A)

(BTW, an element of T (A) is called a computation)
As a respectable programming language our “pure”, original,
one, has a program-which-do-nothing:

P-A-B
Poida=P thatis ida;P =P
idgoP =P thatis P;idg =P

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Identities

Why do we need the following map?
na:A—T(A)
(BTW, an element of T (A) is called a computation)
As a respectable programming language our “pure”, original,
one, has a program-which-do-nothing:
P:A—B
Poida =P thatis idpy;P =P
idgoP =P thatis P;idg =P
What should be identities for the monadic langauge?
A~ AisA—T(A)
P:A—T(B)
Pena=P thatis na;P* =P
npeP =P thatis P;(ng)* =P

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Kleisli Triple

Definition

(T7 n, _*) : 77; = IdT(A)
na f* =
(f:g7) =(fig")"

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Kleisli Triple

Definition

(T7 n, _*) : 77; = IdT(A)
na f* =1
(f;97) = (f;9")"

Example: Side-Effects

T(A)=(AxS)S

na:a— As:S.(a,s)
(f:A—=T(B))— (f*: T(A) — T(B))

s.t. f*(c)==As:S.let (a, s’')=c(s)inf(a)s’)

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Strength

ta g :AxT(B)— T(AxB)

Compare a “simple” | et
and a | et with nonlinear usage of variables.

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Strength

ta g :AxT(B)— T(AxB)

Compare a “simple” | et
and a | et with nonlinear usage of variables.

Example: Side-Effects

T(A)=(AxS)S
t(a, c)==As:S.let (b,s')=c(s)in ((a, b), s’)

Shkaravska Side-effect Monad

Motivation

Adding Imperative Features to Functional Programs

Previous Works

Axiomatics

Side-Effects
S — VLOC

sel(upd(a, loc, v), loc) =v

upd(a, loc, sel(a, loc)) =a

upd(upd(a, loc, v), loc, v') =upd(a, loc, v')

upd(upd(a, loc, v), loc’, v’) = upd(upd(a, loc’, v’), loc, v),
where loc # loc’

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

Axiomatics

Side-Effects
S — VLOC

sel(upd(a, loc, v), loc) =v

upd(a, loc, sel(a, loc)) =a

upd(upd(a, loc, v), loc, v') =upd(a, loc, v')

upd(upd(a, loc, v), loc’, v’) = upd(upd(a, loc’, v’), loc, v),
where loc # loc’

!

Positive Subtyping
get(put(c, a)) = a
put(c, get(c)) =c
put(put(c, a), a’) = put(c, &)

o

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

View-Update Problem

wska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine
the corresponding state monads, (C x (—))¢ and (A x (—))A.

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine

the corresponding state monads, (C x (—))© and (A x (=))A.
A total lens | is a pair of maps, get,

| ~C—A

and putback,
I\.:CxA—C.

Shkaravska Side-effect Monad

Motivation) .)
Adding Imperative Features to Functional Programs

Previous Works

View-Update Problem

Views of a database, concrete or abstract, are its states.
Sets of views, C and A, determine

the corresponding state monads, (C x (—))© and (A x (=))A.
A total lens | is a pair of maps, get,

| ~C—A

and putback,
I\.:CxA—C.

A lens is called very well behaved if its components subject to
three axioms:

I \ (I /c,c)=c (GetPut)
(N (a c))=a (PutGet)
N (@, 1N (a,c)) =1\ (a,c) (PutPut)

Shkaravska Side-effect Monad

Our Results Categorical Semantics Of View-Update Problem

Outline

9 Our Results
@ Categorical Semantics Of View-Update Problem

Shkaravska Side-effect Monad

Our Results Categorical Semantics Of View-Update Problem

Categorical Semantics
Of View-Update Problem

Theorem. Given a very well behaved lens |, one can construct
a functor from Kl(Ta) onto KI(T¢).

Shkaravska Side-effect Monad

Conclusions

Conclusions

@ Programming over data bases may be considered as
functional programming with side effects

Shkaravska Side-effect Monad

Conclusions

Conclusions

@ Programming over data bases may be considered as
functional programming with side effects

@ A very-well behavied lens defines a map of Kleisli
categories

Shkaravska Side-effect Monad

Conclusions

Conclusions

@ Programming over data bases may be considered as
functional programming with side effects

@ A very-well behavied lens defines a map of Kleisli
categories

@ Future Work

@ To which extend aur assumption is correct? What can it
bring to data base world?

Shkaravska Side-effect Monad

Conclusions

Conclusions

@ Programming over data bases may be considered as
functional programming with side effects

@ A very-well behavied lens defines a map of Kleisli
categories

@ Future Work

@ To which extend aur assumption is correct? What can it
bring to data base world?
@ Very-well behavied lens defines a monad morphism

Shkaravska Side-effect Monad

	Motivation
	Adding Imperative Features to Functional Programs
	Previous Works

	Our Results
	Categorical Semantics Of View-Update Problem

	Conclusions

