
Size reduction of multitape automata

Hellis Tamm

Literature:

Tamm, H. On minimality and size reduction of one-tape and

multitape finite automata. PhD thesis, Department of Computer

Science, University of Helsinki, Finland, 2004.

Tamm, H., Nykänen, M., and Ukkonen, E. Size reduction of

multitape automata. Tenth Int. Conf. on Implementation and

Application of Automata (CIAA 2005). To appear in: LNCS 3845,

Springer-Verlag, 2006.

1



Motivation

• To develop a string handling and manipulating database system

• Expressing string predicates in the Alignment Declaration

language

• String declarations are converted into an executable form via

an intermediate form – two-way multitape automata

• Size reduction of multitape automata

2



Size reduction of multitape automata

We present:

• multitape automata size reduction algorithm

• NFA reduction algorithm (based on [Kameda and Weiner])

We combine these two algorithms to get an algorithm for reducing

the size of our two-way multitape automata.

3



Alignment Declaration Language

Grahne, G., Hakli, R., Nykänen, M., Tamm, H., and Ukkonen, E.

Design and implementation of a string database query language.

Inform. Syst. 28, (2003), 311-337.

To describe string comparison and manipulation operations over

several strings that are manipulated together.

Strings are denoted by variables x, y, .... Each string is surrounded

by left and right endmarkers [ and ]. Initially, the current position

for each string is its left endmarker. To scan a string, the current

position can be moved either to the next or previous symbol. A

basic statement is an on-statement, for example, like

scan x on x=’a’

rightscan x,y on x=y

4



An example

reversal(x, y)

keep x in ’a’, ’b’

keep y in ’a’, ’b’

repeat * times

scan x on

end

scan x on x=]

repeat * times

rightscan x on

scan y on x=y

end

rightscan x on x=[

scan y on y=]

end

end

5



Example: multitape automaton

reversal(x, y)

keep x in ’a’, ’b’

keep y in ’a’, ’b’

repeat * times

scan x on

end

scan x on x=]

repeat * times

rightscan x on

scan y on x=y

end

rightscan x on x=[

scan y on y=]

end

end

L1 L1

]1

[1
R1 R1

[1

[1

L2 L2

]1
[11ba1

@1@1

a2 2b 2[ 2
]

]2

a , b , [1    1    1

a , b , ]1    1    1

6



Example: expanded automaton

L1 L1

]1 ]1

R1 R1

R1
R1

R1 R1

[1 [1
a1 1b

L2

L2

L2L2

]2 2b

a1 1b

L2

a2

a1 1b

L2

L2

R1 R1

a , b 1    1

7



Automaton transformations

Swap Upwards

Swap Downwards

Sink Combine

Source Combine

jb

jb jb

q1 qkq1 qk

qkq1

X1 Xk

a i

XkX1

a ia i

q1 qk

a i

X1 Xk
X1

a i a i

jb jb

jb

q

q’
1q’ kq’. . .

q1 qk. . .q1 qk

1(a ) i1 i)k(a
k

1(a ) i1 i)k(a
k

1q’ kq’. . .

i)k(a
k

i)k(a
k

1(a ) i1

1(a ) i1

q

q’

. . .. . .

(b)

(d) . . .

. . .

q q

q’

q

. . . q’

q

. . .
Xk

(c)

q

. . .

(a)

q

8



Towards the reduction algorithm

Let A = (Q,Σ, δ, qI , F ) be an n-tape automaton.

Let Σ′ = Σ ∪ {[, ], @} ∪ {L, R}. Let a ∈ Σ′, i ∈ {1, ..., n}, and

q1, q2, q ∈ Q.

procedure MoveTransitionUp(A, (q1, ai, q2), q)

1. if transition (q1, ai, q2) exists in A then

2. use the Sink Combine transformation to merge all such states

that are reachable from q1 by a transition labelled by ai

and suitable for this transformation;

3. if q 6= q1 and outdegree(q1) = 1 then

4. use the Swap Upwards transformation on the outgoing

transition of q1 and let T be the set of transitions

with the label ai created by this transformation;

5. for all (q′1, ai, q
′
2) ∈ T where q′1, q

′
2 ∈ Q do

6. MoveTransitionUp((q′1, ai, q
′
2), q);

9



Towards the reduction algorithm

Def. A transition is called a future transition for the state q and

tape i if it is the first transition involving this tape on some path in

A that starts from q.

Let us fix some q ∈ Q, a ∈ Σ′ and i ∈ {1, ..., n}. We want to find a

set of future transitions for q and i, with the label ai, such that by

calling the procedure MoveTransitionUp() for each of these

transitions and the state q, we can reduce the number of states of

A by a certain amount.

10



Towards the reduction algorithm

Let FTq,i,a be a maximal set of future transitions for q and i, with

the same label ai such that the following three conditions hold for

the set PFTq,i,a
of all paths in A which start from q and end by any

transition (q′, ai, q
′′) ∈ FTq,i,a. Let p be any path in PFTq,i,a

. Let

the two last states on p be q′ and q′′.

Assume the following:

(i) there are no loops in p, except that q′′ may be equal to q;

(ii) every state on p that appears after q and before q′′ is non-initial

and non-final, all of its incoming and outgoing transitions are

traversed by some path in PFTq,i,a
, and all of its incoming

transitions involve a tape that is different from i;

(iii) if q′ has more than one outgoing transition then q′′ is

non-initial and has only one incoming transition.

11



Towards the reduction algorithm

Proposition P1. The set FTq,i,a is uniquely defined.

Proposition P2. The series of calls to the procedure

MoveTransitionUp() where it is invoked with every transition in

FTq,i,a and q, results in size reduction of A by |FTq,i,a| − 1 states.

Also, for another b ∈ Σ′ with the set FTq,i,b, the application of

transformations of (P2) for the set FTq,i,a does not affect the

application of transformations of (P2) for the set FTq,i,b.

The proofs can be found in my PhD thesis.

Similarly to the conditions (i)–(iii), symmetric conditions can be

specified that allow to eliminate states from the automaton by a

symmetric procedure MoveTransitionDown() that uses the

Source Combine and Swap Downwards transformations.

12



Reduction algorithm for automaton A

1. m := 0; reduced := true; A1 := CopyOf(A);

2. while reduced = true do

3. reduced := false;

4. for tape := 1 to n do

5. mup := Upwards(A, tape);

6. mdown := Downwards(A1, tape);

7. if mup > 0 or mdown > 0 then

8. if mup ≥ mdown then

9. A1 := CopyOf(A);

10. m := m + mup;

11. else

12. A := CopyOf(A1);

13. m := m + mdown;

14. reduced := true;

15. return A, m;

13



procedure Upwards(A, tape)

1. m := 0;

2. reduced := true;

3. while reduced = true do

4. reduced := false;

5. for all q ∈ Q as long as reduced = false do

6. find the set FTq,tape =
⋃

a∈Σ′

FTq,tape,a;

7. for all a ∈ Σ′ where |FTq,tape,a| > 1 do

8. find a state q′ such that FTq′,tape,a = FTq,tape,a and

the longest path from q′ to the originating state

of any transition in FTq,tape,a is of minimal length;

9. for all t ∈ FTq′,tape,a do

10. MoveTransitionUp(A, t, q′);

11. m := m + |FTq′,tape,a| − 1;

12. reduced := true;

13. return m;

14



Example: reduction algorithm in work

20 20

20 20 20

20 20 20

20

20

01

01 01

01

11

11

11 01 11

20

11

20

01 11

20 20 20

20 20 20

20

20

01

01 01

01

11

11

11 01 11

20

11

20

01 11

20

15



Example: the resulting automaton

01

11

01 11 01 11

20

20

20

20

11011101

01 11

16



Example: applying the reduction algorithm to the

automaton for reversal(x, y) predicate

L1 L1

]1 ]1

R1 R1

R1
R1

R1 R1

[1 [1
a1 1b

L2

L2

L2L2

]2 2b

a1 1b

L2

a2

a1 1b

L2

L2

R1 R1

a , b 1    1

L1
1    1a , b 

]1

R1 R1

[1

L2

]2

a1

[1

L2 L2

a2 2b

R1 R1
R1 R1

1b

a1

a11b
1b

17



Another approach: using NFA reduction

algorithms

Our multitape automata can be viewed as (one-tape) NFAs over

the alphabet {ai | a ∈ Σ′, i ∈ {1, ..., n}}. Therefore, we can apply

NFA size reduction methods as well.

We consider NFA reduction based on [Kameda and Weiner, 1970].

Let A be an NFA and let C = subset construction(AR).

Kameda and Weiner: two states of A are equivalent if and only if

they appear exactly in the same states of C. This is useful for DFA

minimization – by merging the equivalent states one can find a

minimal DFA. But this method can be used for NFA reduction, too.

Similarly, we can find the equivalent states of AR, and by

appropriate merging of states, use this to reduce A.

Merging the equivalent states in NFA can produce useless states

which can be eliminated.

18



NFA reduction

Similarly to [Ilie and Yu], we can possibly get a smaller NFA by

combining the reductions corresponding to the two equivalences.

We propose the following method for NFA reduction.

First, find and merge the equivalent states of an NFA, and

eliminate the useless states from the automaton.

Second, find and merge the equivalent states of the reversal of the

resulting automaton, eliminating the useless states as well.

If the automaton size was reduced by the second method, then

again, apply the first method, etc.

That is, alternatingly apply two reduction methods (with the

elimination of useless states), until no more reduction of the

automaton occurs.

19



Example: applying the NFA reduction algorithm

to the automaton for reversal(x, y) predicate

L1 L1

]1 ]1

R1 R1

R1
R1

R1 R1

[1 [1
a1 1b

L2

L2

L2L2

]2 2b

a1 1b

L2

a2

a1 1b

L2

L2

R1 R1

a , b 1    1

L1
1    1a , b 

]1

R1

[1 a1 1b

L2

]2

L2 L2

a2

2b

20



Example: applying the multitape automata

reduction algorithm after NFA reduction

L1
1    1a , b 

]1

R1

[1 a1 1b

L2

]2

L2 L2

a2

2b

L1
1    1a , b 

]1

R1

]2 a2

2b

[1

L2

a1 1b

21



A more general multitape automata reduction

algorithm

Apply two sequences of algorithms consisting of the NFA reduction

procedure and the multitape automata reduction algorithm by turn

on A, at one time starting with the NFA reduction algorithm and

the other time starting with the multitape automata reduction

algorithm, and stopping when no more size reduction occurs to A.

Output the smaller of the resulting two automata.

22



Experimental results

String n |Σ| |Aorig| |Aexp| Automaton size during

predicate the reduction process

RedNF A RedMulti RedNF A

reversal 2 2 17 23 11 9 9

Redmulti RedNF A Redmulti RedNF A

16 11 9 9

RedNF A Redmulti

substring 2 2 11 18 9 9

Redmulti RedNF A Redmulti

17 9 9

RedNF A Redmulti

subsequence 2 2 11 17 7 7

Redmulti RedNF A Redmulti

16 7 7

RedNF A Redmulti

prefix 2 2 9 16 7 7

Redmulti RedNF A Redmulti

15 7 7

23



String n |Σ| |Aorig| |Aexp| Automaton size during

predicate the reduction process

RedNF A Redmulti RedNF A

concatenation 3 2 21 20 13 12 12

Redmulti RedNF A Redmulti RedNF A

19 13 12 12

RedNF A Redmulti RedNF A

shuffle 3 2 21 51 12 10 10

Redmulti RedNF A Redmulti RedNF A

45 12 10 10

RedNF A Redmulti RedNF A

overlap 3 2 15 48 21 20 20

Redmulti RedNF A Redmulti RedNF A

44 20 19 19

RedNF A Redmulti RedNF A

edit distance 3 4 24 168 28 27 27

Redmulti RedNF A Redmulti RedNF A

143 28 27 27

24


