
'

&

$

%

Structured Computation on Trees
or, What’s Behind That Zipper? (A Comonad)

Tarmo Uustalu

TSEM, 8 Dec. 2005

1

'

&

$

%

That Zipper?

• Ever had to represent trees with a focus of attention and refocussing

operations?

• The way: know or reinvent Huet’s zipper (JFP 97).

• Idea: a tree with a focus = a path structure and a subtree

• Computations on trees: attribute evaluation, XML text manipulation.

• In attribute evaluation, the shape of the tree does not change and the same

computation is done at every node (of the same type).

• Attribute evaluation: comonadic computation on the comonad of the zipper,

similarly to dataflow computation which is also comonadic.

2

'

&

$

%

Outline

• Huet’s zipper

• Comonads

• Attribute evaluation as comonadic computation

3

'

&

$

%

Attributed binary trees

• We are interested in attributed binary trees. Mathematically,

TreeE A = µX. A × (E + X × X)

∼= A × (E + TreeE A × TreeE A)

• In Haskell,

data Tree e a = a :< Trunk e (Tree e a)

data Trunk e x = Leaf e | Bin x x

4

'

&

$

%

The zipper

• A path structure determines everything above and around a node in a

hypothetical tree.

It is a path (list of turns) decorated with node attributes and side trees.

The list is a snoc-list: we want to read it left-to-right (= down from root to

focus), but analyse it right-to-left (= up from focus to root).

• Mathematically,

Cxt E A = µX. 1 + X × (A × TreeE A + A × TreeE A)

∼= 1 + Cxt E A × (A × TreeE A + A × TreeE A)

• In Haskell,

data Cxt e a = Nil | Cxt e a :> Turn a (Tree e a)

type Turn x y = Either (x, y) (x, y)

data Either z w = Left z | Right w

5

'

&

$

%

• A tree with a focus = a path structure and a (sub)tree:

CxtTreeE A = Cxt E A × TreeE A

or,

data CxtTree e a = Cxt e a :=| Tree e a

6

'

&

$

%

Zipper navigation: doing and undoing the zipper

• Moving up (doing):

goParSibl :: CxtTree e a -> Maybe (Turn (CxtTree e a) (CxtTree e a))

goParSibl (Nil :=| as) = Nothing

goParSibl (az :> Left (a, asr) :=| as)

= Just (Left (az :=| (a :< Bin as asr),

(az :> Right (a, as) :=| asr)))

goParSibl (az :> Right (a, asl) :=| as)

= Just (Right (az :=| (a :< Bin asl as),

(az :> Left (a, as) :=| asl)))

• Moving down (undoing):

goChildren :: CxtTree e a -> Trunk e (CxtTree e a)

goChildren (az :=| (a :< Leaf e)) = Leaf e

goChildren (az :=| (a :< Bin asl asr))

= Bin (az :> Left (a, asr) :=| asl)

(az :> Right (a, asl) :=| asr)

7

'

&

$

%

Comonads

• Comonads are a formal dual of monads. Monads are extensively used in

functional programming to structure effectful computation.

• A comonad is a a type constructor D with two polymorphic functions

ε : D A → A (the counit) and −† : (D A → B) → (D A → D B) (the coKleisli

extension), satisfying certain laws.

• In Haskell,

class Comonad d where

counit :: d a -> a

cobind :: (d a -> b) -> d a -> d b

8

'

&

$

%

• A function f : D A → B is called a coKleisli arrow (of D) from A → B

(notation f : A ; B).

• The counit is the identity coKleisli arrow, the coKleisli extension gives that

they can be composed. The comonad laws guarantee that composition is

associative and has the identity of as the left and right unit.

• Any function f : A → B can be lifted to a coKleisli arrow Jf : A ; B: take

Jf = f ◦ εA

9

'

&

$

%

• The Kleisli arrows of a comonad correspond to context-dependent functions.

• A context-dependent function from A to B is a function DA → B i.e., a

coKleisli map A ; B.

• DA is the type of contextually situated values of type A.

• The counit εA : DA → A discards the context of its input.

• The coextension k† : DA → DB of a function k : DA → B duplicates the

context of its input (to feed it to k and still have a copy left).

• Examples: product comonad, comonads of dataflow computation (Uustalu,

Vene, APLAS 2005)

• Examples of today: trees and zippers and attribute evaluation

10

'

&

$

%

Attribute grammars

• An attribute grammar is a CF grammar augmented with attributes and

semantic equations.

• We consider a fixed CF grammar with one non-terminal S and production rules

S −→ E

S −→ SS

E is a pseudoterminal.

• For an attribute type A for S-nodes, the type of attributed S-trees is TreeE A.

11

'

&

$

%

Purely synthesized attribute grammars

• For a purely synthesized attribute grammar, the local value of a defined

attribute of a semantic equation can explicitly depend on the local and

children-node values of the defining attributes.

• The relevant comonad is TreeE, where the value under focus is the root

atribute value and those in the subtrees form are its context.

• In Haskell,

instance Comonad (Tree e) where

counit (a :< _) = a

cobind k d@(_ :< as) = k d :< case as of

Leaf e -> Leaf e

Bin asL asR -> Bin (cobind k asL) (cobind k asR)

12

'

&

$

%

• The Kleisli arrows represent tree functions:

class TF e d where

run :: (d e a -> b) -> Tree e a -> Tree e b

instance TF e Tree where

run = cobind

• Looking up the values at the children:

class Synth e d where

children :: d e a -> Trunk e a

instance Synth e Tree where

children (_ :< as) = case as of

Leaf e -> Leaf e

Bin (aL :< _) (aR :< _) -> Bin aL aR

13

'

&

$

%

General attribute grammars

• Here we need a more permissive notion of context. This is provided by the

zipper.

• Now CxtTreeE is a comonad as well!

instance Comonad (CxtTree e) where

counit (_ :=| (a :< _)) = a

cobind k d = cobindC k d :=| cobindT k d

where cobindC k d = case goParSibl d of

Nothing -> Nil

Just (Left (d’, dR)) ->

cobindC k d’ :> Left (k d’, cobindT k dR)

Just (Right (d’, dL)) ->

cobindC k d’ :> Right (k d’, cobindT k dL)

cobindT k d = k d :< case goChildren d of

Leaf e -> Leaf e

Bin dL dR -> Bin (cobindT k dL) (cobindT k dR)

14

'

&

$

%

• CoKleisli arrows can be interpreted as tree functions and there is an operation

for getting the values of the attribute at the children of a node.

instance TF e CxtTree where

run k as = bs where Nil :=| bs = cobind k (Nil :=| as)

instance Synth e CxtTree where

children (_ :=| (_ :< as)) = case as of

Leaf e -> Leaf e

Bin (aL :< _) (aR :< _) -> Bin aL aR

15

'

&

$

%

• There is also an operation that checks whether the local node is the root or not,

and if it is not, obtains the value of the attribute at the parent and the sibling.

class Inh e d where

parSibl :: d e a -> Maybe (Either (a, a) (a, a))

instance Inh e CxtTree where

parSibl (Nil :=| _) = Nothing

parSibl (_ :> b :=| _) = Just $ case b of

Left (a, a’ :< _) -> Left (a, a’)

Right (a, a’ :< _) -> Right (a, a’)

16

'

&

$

%

Examples

• Checking a tree for AVLness.

• Attribute grammar presentation:

S` −→ E

Sb −→ Sb

LSb

R

S`.avl = tt

Sb.avl = Sb

L.avl ∧ Sb

R.avl ∧ Sb.locavl

S`.locavl = tt

Sb.locavl = |Sb

L.height − Sb

R.height | ≤ 1

S`.height = 0

Sb.height = max(Sb

L.height , Sb

R.height) + 1

17

'

&

$

%

• Comonadic Haskell:

avl :: (Comonad (d e), Synth e d) => d e () -> Bool

avl d = case children d of

Leaf _ -> True

Bin _ _ -> bL && bR && locavl d

where Bin bL bR = children (cobind avl d)

locavl :: (Comonad (d e), Synth e d) => d e () -> Bool

locavl d = case children d of

Leaf _ -> True

Bin _ _ -> abs (hL - hR) <= 1

where Bin hL hR = children (cobind height d)

height :: (Comonad (d e), Synth e d) => d e () -> Integer

height d = case children d of

Leaf _ -> 0

Bin _ _ -> max hL hR + 1

where Bin hL hR = children (cobind height d)

18

'

&

$

%

• Preorder numbering of the nodes of a tree.

• Attribute grammar presentation:

S` −→ E

Sb −→ Sb

LSb

R

Sb

L.numin = Sb.numin + 1

Sb

R.numin = Sb

L.numout + 1

S`.numout = S`.numin

Sb.numout = Sb

R.numout

19

'

&

$

%

• Comonadic Haskell:

numin :: (Comonad (d e), Synth e d, Inh e d) => d e () -> Integer

numin d = case parSibl d of

Nothing -> 0

Just (Left _) -> ni + 1

where Just (Left (ni, _)) = parSibl (cobind numin d)

Just (Right _) -> noL + 1

where Just (Right (_, noL)) = parSibl (cobind numout d)

numout :: (Comonad (d e), Synth e d, Inh e d) => d e () -> Integer

numout d = case children d of

Leaf e -> numin d

Bin _ _ -> noR

where Bin _ noR = children (cobind numout d)

20

'

&

$

%

Conclusions

• The zipper datatype hides a comonad. This is exactly the comonad one needs

to structure attribute evaluation.

• GADTs+typecase or dependent types needed to smoothly deal with multiple

non-terminals, multiple rules for individual non-terminals.

• To do: Comonadically interpreted AG definition language.

21

