
'

&

$

%

Representing cyclic structures as nested datatypes

Tarmo Uustalu

joint work with Neil Ghani, Makoto Hamana, Varmo Vene

TSEM, 16 March 2006

1



'

&

$

%

Cyclic structures?

• Every now and then you’d like to represent cyclic structures in Haskell in such

a way that the cycles can be manipulated explicitly (no implicit unwinding).

• This is tricky. Cf., e.g., Fegaras, Sheard or Turbak, Wells.

• An exercise about pointers in FP, but really a bit more (you do not want to

think in terms of pointers too much, instead you want a representation that

thinks for you).

• Here: We proceed from the solution of Fegaras and Sheard (explicit fixpoint

operators) and improve on it, switching to a more accurate and better

manipulable representation.

2



'

&

$

%

Cyclic lists

• By a cycle we mean a substructure in an infinite structure that repeats itself on

a path down from the root.

• Examples:

clist1 = fix (\ xs -> 1 : 2 : xs)

clist2 = 1 : fix (\ xs -> 2 : 3 : xs)

fix :: (a -> a) -> a

fix f = f (fix f)

3



'

&

$

%

Cyclic lists as a mixed-variant datatype

• Fegaras and Sheard proposed making fixpoint operations explicit (cf explicit

substitutions). An explicit fixpoint operator is a constructor, not a function, so

it does not do anything by itself.

• Cyclic lists a la Fegaras and Sheard:

data CList = Nil

| Cons Int CList

| Rec (CList -> CList) -- notice the two recursive occurrences

-- of CList, one is negative!

• Examples:

clist1 = Rec (\ xs -> Cons 1 (Cons 2 xs))

clist2 = Cons 1 (Rec (\ xs -> Cons 2 (Cons 3 xs)))

4



'

&

$

%

• Functions manipulating these representations must unfold Rec-structures

(there is not much else they could do).

Tail function:

ctail :: CList -> CList

ctail (Cons x xs) = xs

ctail (Rec f) = ctail (f (Rec f))

Map function:

cmap :: (Int -> Int) -> CList -> CList

cmap g Nil = Nil

cmap g (Cons x xs) = Cons (g x) (cmap g xs)

cmap g (Rec f) = cmap g (f (Rec f))

5



'

&

$

%

• Further shortcomings of this representation:

• The semantic category has to be algebraically compact for mixed-variant types

to make semantic sense.

• The argument type CList → CList of Rec is too big: we only want fixpoints of

append-functions, not of just any list-functions. The following is not cyclic:

acyclic = Rec (\ xs -> Cons 1 (cmap (+1) xs))

• One can represent the unproductive empty cycle, which cannot be unwinded:

empty = Rec (\ xs -> xs)

• The representation is not unique: We can mark a position with zero, one or

multiple bound variables:

clist1 = Rec (\ xs -> Rec (\ ys ->

Cons 1 (Cons 2 (Rec \ zs -> xs))))

6



'

&

$

%

• A fix to two last problems: require that Rec always comes in combination with

Cons and that Cons can never come alone:

data CList = Nil

| RCons Int (CList -> CList)

• But overall, the approach is comparable the “higher-order abstract syntax”

(HOAS) representation of lambda calculus syntax and the problems remain.

• A better alternative: make the Haskell-level lambda-abstractions object-level.

7



'

&

$

%

Something you did not know: Nested datatypes

• The parameterized datatype of lists is homogeneous or non-nested:

data List a = Nil | Cons a (List a)

• But one can also define parameterized datatypes that are heterogeneous or

nested (terminology of Bird and Meertens): in the following definitions, the

parameter varies in the recursion:

data Nest a = NilN | ConsN (a, Nest (a, a))

data Bush a = NilB | ConsB (a, Bush (Bush a))

• While homogeneous datatypes are just families of recursive types,

heterogeneous datatypes are recursive families of types. You cannot define

Nest Int in isolation from Nest (Int, Int).

8



'

&

$

%

Cyclic lists as a nested datatype

• Idea: use de Bruijn levels, number the positions on the path from the head to

the position immediately preceding the given one, refer to these numbers.

(de Bruijn indices: number the positions in the opposite order starting from

the position immediately before the given one.)

• Datatype:

data Void -- empty type

void :: Void -> a -- empty function

data CList a = Var a -- pointer

| Nil

| RCons Int (CList (Maybe a))

-- the tail can point to one position more

• Positions:

Nothing :: Maybe Void

Nothing, Just Nothing :: Maybe (Maybe Void)

Nothing, Just Nothing, Just (Just Nothing) :: Maybe (Maybe (Maybe Void)

...

9



'

&

$

%

• Examples:

clist1 = RCons 1 (RCons 2 (Var Nothing))

clist2 = RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing))))

• Importantly, we can only define fixpoints of append-functions. And as always

with de Bruijn notations, we need not worry about α-conversion.

10



'

&

$

%

• List algebra structure:

cnil :: CList Void

cnil = Nil

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x (shift xs)

shift :: CList a -> CList (Maybe a)

shift (Var z) = Var (Just z)

shift Nil = Nil

shift (RCons x xs) = RCons x (shift xs)

(shift renumbers the positions)

11



'

&

$

%

• List coalgebra structure: the head function (undefined on the empty list):

chead :: CList Void -> Int

chead (Var z) = void z

chead (RCons x _) = x

• List coalgebra structure: the tail function (undefined on the empty list):

ctail :: CList Void -> CList Void

ctail (Var z) = void z

ctail (RCons x xs) = csnoc x xs

csnoc :: Int -> CList (Maybe a) -> CList a

csnoc y (Var Nothing) = RCons y (Var Nothing)

csnoc y (Var (Just z)) = Var z

csnoc y Nil = Nil

csnoc y (RCons x xs) = RCons x (csnoc y xs)

(csnoc renumbers the positions a list but also appends a value to it)

12



'

&

$

%
13



'

&

$

%

• Example of using the coalgebra structure: We can unwind a cyclic list into a

possible infinite list:

unwind :: CList Void -> [Int]

unwind Nil = []

unwind xs = chead xs : unwind (ctail xs)

• This is actually an unfold for possibly infinite lists:

unwind = unfoldr cheadtail

unfoldr :: (c -> Maybe (a, c)) -> c -> [a]

unfoldr f c = case f c of

Nothing -> []

Just (a, c’) -> a : unfoldr f c’

cheadtail :: CList Void -> Maybe (Int, CList Void)

cheadtail Nil = Nothing

cheadtail xs = Just (chead xs, ctail xs)

14



'

&

$

%

• Unfolding list algebras into possibly infinite cyclic lists (detecting cycles)

(assumes terminating equality on the state space):

Idea: keep a list of the states already visited (together with an aligned list of

the positions where this happened):

cunfoldL :: Eq c => (c -> Maybe (Int, c)) -> c -> CList Void

cunfoldL = cunfoldL’ [] []

cunfoldL’ :: Eq c => [c] -> [a]

-> (c -> Maybe (Int, c)) -> c -> CList a

cunfoldL’ cs as ht c = case lookup c (zip cs as) of

Nothing -> case ht c of

Nothing -> Nil

Just (x, c’) -> let cs’ = cs ++ [c]

as’ = Nothing : map Just as

in RCons x (cunfoldL’ cs’ as’ ht c’)

Just a -> Var a

15



'

&

$

%

• Example application: zipWith for cyclic lists:

czipWith :: (Int -> Int -> Int)

-> CList Void -> CList Void -> CList Void

czipWith f xs ys = cunfoldL ht (xs, ys) where

ht (xs, ys) = case cheadtail xs of

Nothing -> Nothing

Just (x, xs’) -> case cheadtail ys of

Nothing -> Nothing

Just (y, ys’) -> Just (f x y, (xs’, ys’))

16



'

&

$

%

Cyclic binary trees

• What we just showed for lists, scales up to other datatypes.

• Consider binary trees. Because of non-linearity (multiple paths down from the

root), they are more general.

• Datatype of cyclic binary trees:

data CTree a = VarT a

| Leaf

| RBin Int (CTree (Maybe a)) (CTree (Maybe a))

• Example:

ctree = RBin 1 (RBin 2 (RBin 3 (VarT Nothing) Leaf)

Leaf)

(RBin 4 (RBin 5 Leaf Leaf)

(RBin 6 Leaf Leaf))

17



'

&

$

%
18



'

&

$

%

• Tree algebra structure:

cleaf :: CTree Void

cleaf = Leaf

cbin :: Int -> CTree Void -> CTree Void -> CTree Void

cbin x xsL xsR = RBin x (shiftT xsL) (shiftT xsR)

shiftT :: CTree a -> CTree (Maybe a)

shiftT (VarT x) = VarT (Just x)

shiftT Leaf = Leaf

shiftT (RBin x xsL xsR) = RBin x (shiftT xsL) (shiftT xsR)

(shiftT renumbers the positions)

19



'

&

$

%

• Tree coalgebra structure:

Here, the situation is more subtle than with lists: trees are nonlinear, the left

subtree of a cyclic tree with back-pointed root node contains not only a

relocated copy of this root node but also the right subtree.

csubL :: CTree Void -> CTree Void

csubL (VarT z) = void z

csubL (RBin x xsL xsR) = csnocL x xsR xsL

csnocL :: Int -> CTree (Maybe a) -> CTree (Maybe a) -> CTree a

csnocL y ys (VarT Nothing) = RBin y (VarT Nothing) ys

csnocL y ys (VarT (Just z)) = VarT z

csnocL y ys Leaf = Leaf

csnocL y ys (RBin x xsL xsR) = RBin y (csnocL y ys’ xsL)

(csnocL y ys’ xsR)

where ys’ = shiftT ys

csubR :: CTree Void -> CTree Void

...

csnocR :: Int -> CTree (Maybe a) -> CTree (Maybe a) -> CTree a

...

20



'

&

$

%
21



'

&

$

%

Conclusions

• Fegaras and Sheard’s basic idea to represent cycles as explicit fixpoints was

correct, but it is considerably better to use de Bruijn notation instead of

HOAS.

• The technique extends to all polynomial datatypes.

• Extend this to sharing: in addition to back-edges, allow edges to positions to

the left from the spine.

• Develop a categorical account of rational and cyclic coinductive types.

22


