Representing cyclic structures as nested datatypes

Tarmo Uustalu

joint work with Neil Ghani, Makoto Hamana, Varmo Vene

TSEM, 16 March 2006




~

CYCLIC STRUCTURES? '

Every now and then you’d like to represent cyclic structures in Haskell in such

a way that the cycles can be manipulated explicitly (no implicit unwinding).
This is tricky. Cf., e.g., Fegaras, Sheard or Turbak, Wells.

An exercise about pointers in FP, but really a bit more (you do not want to
think in terms of pointers too much, instead you want a representation that
thinks for you).

Here: We proceed from the solution of Fegaras and Sheard (explicit fixpoint
operators) and improve on it, switching to a more accurate and better

manipulable representation.




CYCLIC LISTS .

e By a cycle we mean a substructure in an infinite structure that repeats itself on

a path down from the root.

e Examples:

clistl = fix (\ xs > 1 : 2 : xs)
clist2 =1 : fix (\ xs > 2 : 3 : xs8)

fix :: (a -> a) -> a
fix £f = £ (fix f)




///’

~

CYCLIC LISTS AS A MIXED-VARIANT DATATYPE.

e Fegaras and Sheard proposed making fixpoint operations explicit (cf explicit
substitutions). An explicit fixpoint operator is a constructor, not a function, so
it does not do anything by itself.

e Cyclic lists a la Fegaras and Sheard:

data CList = Nil
| Cons Int CList
| Rec (CList -> CList) -- notice the two recursive occurrences

-- of CList, one is negative!

e Examples:

clistl = Rec (\ xs -> Cons 1 (Cons 2 xs))
clist2 = Cons 1 (Rec (\ xs -> Cons 2 (Cons 3 xs)))




///’

e Functions manipulating these representations must unfold Rec-structures

(there is not much else they could do).
Tail function:

ctail :: CList -> CList

ctail (Cons x xs)
ctail (Rec f)

XS
ctail (f (Rec f))

Map function:

cmap :: (Int -> Int) -> CList -> CList
cmap g Nil = Nil
cmap g (Cons x xs) = Cons (g x) (cmap g xs)

cmap g (Rec f) = cmap g (f (Rec £))




~

Further shortcomings of this representation:

The semantic category has to be algebraically compact for mixed-variant types

to make semantic sense.
The argument type CList — CList of Rec is too big: we only want fixpoints of
append-functions, not of just any list-functions. The following is not cyclic:

acyclic = Rec (\ xs -> Cons 1 (cmap (+1) xs))

One can represent the unproductive empty cycle, which cannot be unwinded:
empty = Rec (\ xs -> xs)

The representation is not unique: We can mark a position with zero, one or
multiple bound variables:

clistl = Rec (\ xs -> Rec (\ ys ->
Cons 1 (Cons 2 (Rec \ zs -> xs))))




4 N

e A fix to two last problems: require that Rec always comes in combination with

Cons and that Cons can never come alone:

data CList = Nil
| RCons Int (CList -> CList)

e But overall, the approach is comparable the “higher-order abstract syntax”

(HOAS) representation of lambda calculus syntax and the problems remain.

e A better alternative: make the Haskell-level lambda-abstractions object-level.




///’

SOMETHING YOU DID NOT KNOW: NESTED DATATYPES'

e The parameterized datatype of lists is homogeneous or non-nested:

data List a = Nil | Cons a (List a)

e But one can also define parameterized datatypes that are heterogeneous or
nested (terminology of Bird and Meertens): in the following definitions, the
parameter varies in the recursion:

data Nest a = NilN | ConsN (a, Nest (a, a))
data Bush a = NilB | ConsB (a, Bush (Bush a))

e While homogeneous datatypes are just families of recursive types,
heterogeneous datatypes are recursive families of types. You cannot define

Nest Int in isolation from Nest (Int, Int).




/ CYCLIC LISTS AS A NESTED DATATYPE.

e Idea: use de Bruijn levels, number the positions on the path from the head to
the position immediately preceding the given one, refer to these numbers.
(de Bruijn indices: number the positions in the opposite order starting from
the position immediately before the given one.)

e Datatype:
data Void -—- empty type
void :: Void -> a -- empty function
data CList a = Var a -- pointer

| Nil
| RCons Int (CList (Maybe a))

-— the tail can point to one position more
e Positions:
Nothing :: Maybe Void
Nothing, Just Nothing :: Maybe (Maybe Void)
\\\\ Nothing, Just Nothing, Just (Just Nothing) :: Maybe (Maybe (Maybe Void) 4///




e Examples:

clistl = RCons 1 (RCons 2 (Var Nothing))
clist2 = RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing))))

e Importantly, we can only define fixpoints of append-functions. And as always

with de Bruijn notations, we need not worry about a-conversion.

10




///’

e List algebra structure:
cnil :: CList Void

cnil = Nil

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x (shift xs)

shift :: CList a -> CList (Maybe a)
shift (Var z) = Var (Just z)

shift Nil = Nil

shift (RCons x xs) = RCons x (shift xs)

(shift renumbers the positions)

11



///’

e List coalgebra structure: the head function (undefined on the empty list):

chead :: CList Void -> Int
chead (Var z) = void z
chead (RCons x _)

X

e List coalgebra structure: the tail function (undefined on the empty list):

ctail :: CList Void -> CList Void
ctail (Var z) = void z

ctail (RCons x xXs) = csnoc X XS

csnoc :: Int -> CList (Maybe a) -> CList a
csnoc y (Var Nothing) = RCons y (Var Nothing)

csnoc y (Var (Just z)) = Var z

csnoc y Nil = Nil

csnoc y (RCons x xs) RCons x (csnoc y xs)

(csnoc renumbers the positions a list but also appends a value to it)

12






///’

e Example of using the coalgebra structure: We can unwind a cyclic list into a
possible infinite list:
unwind :: CList Void -> [Int]
unwind Nil = []

unwind xs = chead xs : unwind (ctail xs)

e This is actually an unfold for possibly infinite lists:

unwind = unfoldr cheadtail

unfoldr :: (c -> Maybe (a, c)) -> ¢ -> [a]
unfoldr £ ¢ = case £ ¢ of
Nothing -> []

Just (a, c’) -> a : unfoldr f ¢’

cheadtail :: CList Void -> Maybe (Int, CList Void)
cheadtail Nil = Nothing

cheadtail xs = Just (chead xs, ctail xs)

~

14



///’

e Unfolding list algebras into possibly infinite cyclic lists (detecting cycles)
(assumes terminating equality on the state space):

Idea: keep a list of the states already visited (together with an aligned list of
the positions where this happened):

cunfoldl. :: Eq c => (c -> Maybe (Int, c)) -> ¢ -> CList Void
cunfoldl = cunfoldlL’ [] []

cunfoldl’ :: Eq c => [c] -> [a]
-> (¢ -> Maybe (Int, c)) -> ¢ -> CList a
cunfoldL’ cs as ht ¢ = case lookup c¢ (zip cs as) of
Nothing -> case ht c of
Nothing -> Nil
Just (x, c’) -> let cs’ = cs ++ [c]
as’ = Nothing : map Just as
in RCons x (cunfoldL’ cs’ as’ ht c’)

Just a -> Var a

N

15



///’

e Example application: zipWith for cyclic lists:

czipWith :: (Int -> Int -> Int)
-> CList Void -> CList Void -> CList Void
czipWith f xs ys = cunfoldlL ht (xs, ys) where
ht (xs, ys) = case cheadtail xs of
Nothing -> Nothing
Just (x, xs’) -> case cheadtail ys of
Nothing -> Nothing
Just (y, ys’) -> Just (f xy, (xs’, ys’))

16



~

CYCLIC BINARY TREES .

What we just showed for lists, scales up to other datatypes.

Consider binary trees. Because of non-linearity (multiple paths down from the

root), they are more general.

Datatype of cyclic binary trees:

data CTree a = VarT a
| Leaf
| RBin Int (CTree (Maybe a)) (CTree (Maybe a))

Example:

ctree = RBin 1 (RBin 2 (RBin 3 (VarT Nothing) Leaf)
Leaf)
(RBin 4 (RBin 5 Leaf Leaf)
(RBin 6 Leaf Leaf))

17



TN




///’

e Tree algebra structure:

cleaf :: CTree Void
cleaf = Leaf

cbin :: Int -> CTree Void -> CTree Void -> CTree Void
cbin x xsL xsR = RBin x (shiftT xsL) (shiftT xsR)

shiftT :: CTree a -> CTree (Maybe a)

shiftT (VarT x) = VarT (Just x)

shiftT Leaf = Leaf

shiftT (RBin x xsL xsR) = RBin x (shiftT xsL) (shiftT xsR)

(shiftT renumbers the positions)

19



/ e Tree coalgebra structure:

csnocL
csnocL
csnocL
csnocL

csnoclL

csubL ::

csubL (VarT z) = void z

csubR ::

csnocR ::

Here, the situation is more subtle than with lists: trees are nonlinear, the left
subtree of a cyclic tree with back-pointed root node contains not only a
relocated copy of this root node but also the right subtree.

CTree Void -> CTree Void

csubL (RBin x xsL xsR) = csnocL x xsR xsL

:: Int -> CTree (Maybe a) -> CTree (Maybe a) -> CTree a
y ys (VarT Nothing) = RBin y (VarT Nothing) ys

y ys (VarT (Just z)) = VarT z

y ys Leaf = Leaf

y ys (RBin x xsL xsR) = RBin y (csnocL y ys’ xsL)

(csnocL y ys’ xsR)
where ys’ = shiftT ys

CTree Void -> CTree Void

Int -> CTree (Maybe a) -> CTree (Maybe a) -> CTree a

~

/

20






CONCLUSIONS .

Fegaras and Sheard’s basic idea to represent cycles as explicit fixpoints was

correct, but it is considerably better to use de Bruijn notation instead of

HOAS.
The technique extends to all polynomial datatypes.

Extend this to sharing: in addition to back-edges, allow edges to positions to

the left from the spine.

Develop a categorical account of rational and cyclic coinductive types.

22




