
The Path to Computer
Mathematics

Venanzio Capretta
University of Nijmegen, The Netherlands

Tallin, 19 April 2007

1



Using Computers in Mathematics:

• Computer Algebra Systems
(Mathematica, Maple)
Symbolic Computation
Inherently Unreliable

• Proof-Assistants (Coq, HOL, Mizar)
Formalization of Proofs
Absolute Certainty
Hard Work (deBruijn factor = 4)

• First-Order Provers (Otter, Vampire)
Automatically prove logical formulas
Restricted domain

Ideal Computer Mathematics System:
Develop proofs interactively, using symbolic com-
putation and some automation.

2



Proof-assistants (Proof-checkers)

Based on different foundations:

• HOL (Higher Order Logic)

• Mizar (Axiomatic Set Theory)

• Coq (Type Theory)

Proof-checkers:
The user inputs a proof
The system checks if it is correct

Proof-assistants:
Help the user to develop the proof
Interactive development
Some automation

The seventeen provers of the world
Freek Wiedijk (ed.), LNAI 3600

3



Four Color Theorem

Every planar map can be colored with at most

4 colors

• Alfred Kempe (1879):

Elegant proof

Considered correct for 10 years

Incorrect

• Kenneth Appel and Wolfgang Haken (1976)

Correct proof

Relied heavily on computer computations

Should we trust the computations?

• Benjamin Werner and Georges Gonthier (2004)

Formal proof in Coq

Computations + Rigorous proofs

4



Kepler Conjecture

The cubic close packing is the densest way to

pack spheres

Thomas Hales (1998) prooved it

Complex computer computations

Panel of 20 referees: 99% sure of correctness

No errors but no certainty of correctness

Hales started Project FlysPecK: formally verify

the proof by computer.

5



Programming with dependent types

Example: List Sorting

Progressive refinements of the type of the pro-

gram:

sort : [N] → [N]
sort : (n : N, l : Nn) → Nn

sort : (n : N, l : Nn) → Permutation(l)
sort : (n : N, l : Nn) → {l′ : Permutation(l) | Ordered(l′)}
A program with the last type is automatically

correct.

This is a way to guarantee correctness.

Relation with logic and mathematics:

∀n : N.∀l : Nn.∃l′ : Permutation(l).Ordered(l′)

6



From constructive mathematics
to type theory

Heyting’s explanation of intuitionistic logic
(first-order arithmetics):

• Proof of A ∧B:
pair 〈a, b〉, a proof of A, b proof of B;

• Proof of A ∨B:
either a proof of A or a proof of B,
with the information of which one it is;

• Proof of A ⇒ B:
function: proofs of A to proofs of B;

• Proof of ∀x.P (x):
function: maps n : N to a proof of P (n);

• Proof of ∃x.P (x):
pair 〈n, h〉: n : N, h proof of P (n).

7



Kleene’s realizability interpretation
(recursion theory: proof = natural number)

• Proof of A ∧B:
pair #〈a, b〉, a proof of A, b proof of B;

• Proof of A ∨B:
either 〈0, a〉 with a proof of A
or #〈1, b〉 with b proof of B

• Proof of A ⇒ B:
a code e : N, such that,
for a proof of A, {e}(a) is a proof of B;

• Proof of ∀x.P (x):
a code e : N, such that,
for n : N, {e}(a) is a proof of P (n);

• Proof of ∃x.P (x):
pair #〈n, h〉: n : N, h proof of P (n).

8



Problem: How do we know if a certain natural

number e is a correct proof?

How do we know if e is a proof of ∀x.P (x)?

Check: {e}(n) is a proof P (n) for all n.

Undecidable.

A proof must itself contain all the information

needed to verify its correctness. If we cannot

decide whether it is correct, then it is an in-

complete proof.

Realizability is undecidable.

Not good for Computer Mathematics.

9



Type Theory

(Curry-Howard Isomorphism)

Correspondence between propositions and types:

A ∧B A×B
A ∨B A + B
A ⇒ B A → B

∀x : A.P (x) Πx : A.P (x)
∃x : A.P (x) Σx : A.P (x)

Martin-Löf Type Theory:

Base Mathematics on this correspondence.

10



No such isomorphism between data types and

mathematical structures.

Problems still remain:

Extensionality

f1, f2 : A → B

Computer Science: f1 = f2 if they are the

same algorithm

Mathematics: f1 = f2 if ∀x : A.f1(x) = f2(x).

Example: insertion sort and quicksort are the

same function for a mathematician, but very

different functions for a computer scientist.

Present situation: no choice, f1 and f2 cannot

be distinguished but cannot be proven equal.

11



Subsets

In Mathematics we can do:

A Set P : A → Prop

{x : A | P (x)}

Such construction is not available in Type The-

ory.

Problem with decidability:

a : A h : P (a)

a : {x : A | P (a)}
This is undecidable: we threw away the proof

h, so we cannot check anymore wheter the

judgement a : {x : A | P (a)} is correct.

12



Quotients

Similar problem:

A Set R : A → A → Prop

A/≡ Set

a1, a2 : A h : R(a1, a2)

[a1]R = [a2]R

We threw away the proof h,

the equality [a1]≡ = [a2]≡ is undecidable.

Partiality

Computer Science: partial recursive functions:

f : A → B doesn’t need to be total,

it may not terminate on some inputs.

If we allow functions to be partial,

the Curry-Howard isomorphism collapses:

A → B cannot be the type of proofs of A ⇒ B.

13



There are solutions to all these problems:

• Extensionality: Extensional Type Theory,

Setoids, Observational Type Theory;

• Subsets and Quotients: Setoids;

• Partiality: Inductive Domain Predicates, De-

lay Monad.

14



The Ideal Computer Mathematics System:

• All Standard Mathematical Constructions;

• Set Theory;

• Rich Programming Language;

• Turing Completeness;

• Reflection;

• Implemented in Itself;

15


