Contracts and Types

Andres Löh¹

joint work with Johan Jeuring², Ralf Hinze¹, Andreas Schmitz¹

¹Universität Bonn

²Universiteit Utrecht

March 2, 2007

An important criterion for the quality of software is reliability:

- correctness: the software does what it is supposed to do
- robustness: the software can deal with unexpected situations

An important criterion for the quality of software is reliability:

- correctness: the software does what it is supposed to do
- robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of software:

- formal proof of correctness,
- type systems (static, dynamic),
- systematic testing,
- "design by contract".

An important criterion for the quality of software is reliability:

- correctness: the software does what it is supposed to do
- robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of software:

- formal proof of correctness,
- type systems (static, dynamic),
- systematic testing,
- "design by contract".

These approaches are not competing. They can be used simultaneously.

	static checking	dynamic checking
simple properties	static types	dynamic types
complex properties	theorem proving	contracts

In this talk: Apply the idea to functional programming, while paying attention to

- higher-order functions,
- algebraic data types,
- parametric (type-)polymorphism.

In this talk: Apply the idea to functional programming, while paying attention to

- higher-order functions,
- algebraic data types,
- parametric (type-)polymorphism.

Idea: we design a type system that includes contracts, but types have a static and a dynamic component.

In this talk: Apply the idea to functional programming, while paying attention to

- higher-order functions,
- algebraic data types,
- parametric (type-)polymorphism.

Idea: we design a type system that includes contracts, but types have a static and a dynamic component.

Note: in a sufficiently expressive functional language, contracts can also be implemented purely as a library.

- 1 Quick intro to BPL
- 2 Syntax of contracts

3 Examples

- 1 Quick intro to BPL
- 2 Syntax of contracts

3 Examples

A contract specifies a desired property. For example:

type $Pos = \{i : Nat | i \ge 0\}$

If e is a boolean expression (in which x of type τ may occur free), then $\{x : \tau \mid e\}$ is a contract, a so-called **predicate contract** or **flat contract**.

type True $\langle a \rangle = \{ _: a \mid true \}$ **type** Nonempty $\langle a \rangle = \{ x : \text{List} \langle a \rangle \mid \text{length } x \neq 0 \}$ Contracts can not also be parameterized over values.

type Between m n = { x : Nat | $m \leq x \&\& x \leq n$ }

We can assert a contract by annotating an expression:

Static and dynamic checking

Each type has a static and a dynamic part. For a predicate contract such as

 $\label{eq:type_prime} \begin{array}{l} \mbox{type Prime} = \{ \ n : \mbox{Nat} \mid \mbox{eqList} \ (\mbox{fun} \ x \ y \Rightarrow x = y) \\ (\mbox{factors } n) \ (\mbox{Cons} \ (1, \mbox{Cons} \ (n, \mbox{Nil}))) \} \end{array}$

the static part is Nat.

Static and dynamic checking

Each type has a static and a dynamic part. For a predicate contract such as

```
\label{eq:type_prime} \begin{array}{l} \mbox{type Prime} = \{ \ n : \mbox{Nat} \mid \mbox{eqList} \ (\mbox{fun} \ x \ y \Rightarrow x = y) \\ (\mbox{factors } n) \ (\mbox{Cons} \ (n, \mbox{Nil}))) \} \end{array}
```

the static part is Nat.

The dynamic part is a **code transformation** that wraps the expression in a run-time test:

```
power (2, 30402457) - 1
is transformed into
(fun n \Rightarrow if eqList (fun x y \Rightarrow x == y) \\ (factors n) (Cons (1, Cons (n, Nil))))
then n
else throw Contract...)
(power (2, 30402457) - 1)
```

Contracts can be embedded into type expressions, for example into function types:

type $F \langle a \rangle = Nonempty \langle a \rangle \rightarrow Pos$

A function with type $F \langle a \rangle$ requires its argument to be a non-empty list with element of type a and ensures that its result is a positive number; Nonempty is the **precondition**, Pos the **postcondition**. Contracts can be embedded into type expressions, for example into function types:

type $F \langle a \rangle = Nonempty \langle a \rangle \rightarrow Pos$

A function with type $F \langle a \rangle$ requires its argument to be a non-empty list with element of type a and ensures that its result is a positive number; Nonempty is the **precondition**, Pos the **postcondition**.

The postcondition may depend on the function argument:

type $lnc = fun (n : Nat) \Rightarrow \{r : Nat | n \leq r\}$

Contracts can be embedded into type expressions, for example into function types:

type $F \langle a \rangle = Nonempty \langle a \rangle \rightarrow Pos$

A function with type $F \langle a \rangle$ requires its argument to be a non-empty list with element of type a and ensures that its result is a positive number; Nonempty is the **precondition**, Pos the **postcondition**.

The postcondition may depend on the function argument:

type Inc = **fun** (n : Nat) \Rightarrow { r : Nat | n \leq r }

The variable n is bound in the **fun** construct and may be used in predicate contracts to the right.

A function contract $\tau_1 \rightarrow \tau_2$ is like a business contract, with obligations and benefits for both parties.

party	obligations	benefits
client	ensure precondition $ au_1$	require postcondition $ au_2$
supplier	ensure postcondition $ au_2$	require precondition $ au_1$

The obligations of one party are the benefits of the other.

A function contract $\tau_1 \rightarrow \tau_2$ is like a business contract, with obligations and benefits for both parties.

party	obligations	benefits
client	ensure precondition $ au_1$	require postcondition $ au_2$
supplier	ensure postcondition $ au_2$	require precondition $ au_1$

The obligations of one party are the benefits of the other.

If a contract is violated at runtime, the software is erroneous.

If the **precondition** is violated, the **client is to blame**. If the **postcondition** is violated, the **supplier is to blame**.

type
$$\mathsf{PosInc} = \mathsf{fun} (n : \mathsf{Pos}) \Rightarrow \{ r : \mathsf{Pos} \mid n \leq r \}$$

Demo.

type
$$\mathsf{PosInc} = \mathsf{fun} (n : \mathsf{Pos}) \Rightarrow \{ r : \mathsf{Pos} \mid n \leq r \}$$

```
val inc = (fun n \Rightarrow n + 1): PosInc
val dec = (fun n \Rightarrow n - 1): PosInc
```

Demo.

Another possibility to define inc is

function inc $(n : Pos) : \{r : Pos (n \leq r) \mid \} = n + 1$

```
type \mathsf{PosInc} = \mathsf{fun} (n : \mathsf{Pos}) \Rightarrow \{ r : \mathsf{Pos} \mid n \lneq r \}
```

```
val inc = (fun n \Rightarrow n + 1): PosInc
val dec = (fun n \Rightarrow n - 1): PosInc
```

Demo.

Another possibility to define inc is

function inc $(n : Pos) : \{r : Pos (n \leq r) \mid \} = n + 1$

Note: Contract violations are only detected if a value is **used** outside of its specification.

It is possible to define flat function contracts:

type PreserveZero = { $f : Nat \rightarrow Nat | f 0 = 0$ }

On principle, contract types can be embedded arbitrarily in other types:

List $\langle Pos \rangle$

describes a list of positive numbers.

On principle, contract types can be embedded arbitrarily in other types:

```
List \langle Pos \rangle
```

describes a list of positive numbers.

Contracts can be combined using "and":

```
Pos & { n : Nat | n \leq 4711 }
```

Note: We do not offer negation or disjunction.

- Quick intro to BPL
- 2 Syntax of contracts

Example: factorization

Let f' be the 'contracted' variant of f.

```
val prime-factors' =

prime-factors : fun (n : Pos) \Rightarrow (List \langle Prime \rangle

& { fs : List \langle Nat \rangle | product fs == n })
```

Let f' be the 'contracted' variant of f.

```
val prime-factors' =
prime-factors : fun (n : Pos) \Rightarrow (List \langle Prime \rangle
& { fs : List \langle Nat \rangle | product fs == n })
```

The function prime-factors is an inverse of product. This idiom can be captured using a higher-order function:

```
type Inverse \langle a, b \rangle (f : a \rightarrow b) (eq : b \rightarrow b \rightarrow b) =

fun (x : b) \Rightarrow { y : a | eq (f y) x }

val prime-factors' =

prime-factors : Pos \rightarrow (List \langle Prime \rangle

& Inverse product (fun x y \Rightarrow x == y))
```

 $\begin{array}{l} \mbox{function fast-sort}' \langle a \rangle (\mbox{cmp}: a \rightarrow a \rightarrow \mbox{Ordering}) \\ & : \mbox{List} \langle a \rangle \rightarrow \mbox{Sorted} \langle a \rangle \mbox{ cmp} = \\ \mbox{fast-sort cmp} \end{array}$

The contract Sorted restricts lists to sorted lists.

```
\begin{array}{l} \mbox{function fast-sort}' \langle a \rangle (\mbox{cmp}: a \rightarrow a \rightarrow \mbox{Ordering}) \\ & : \mbox{List} \langle a \rangle \rightarrow \mbox{Sorted} \langle a \rangle \mbox{ cmp} = \\ \mbox{fast-sort cmp} \end{array}
```

The contract Sorted restricts lists to sorted lists.

We have not (yet) specified that the output list is a permutation of the input list.

Example: sorting, continued

Let bag : List $\langle a \rangle \rightarrow Bag \langle a \rangle$ be a function that turns a list into a bag.

```
\begin{array}{l} \mbox{function fast-sort'} &\langle a \rangle (\mbox{cmp}: a \rightarrow a \rightarrow \mbox{Ordering}) \\ &\vdots \mbox{ fun } (x : \mbox{List} &\langle a \rangle) \Rightarrow \\ & ( \mbox{ Sorted} &\langle a \rangle \mbox{ cmp} \\ &\& \{s : \mbox{List} &\langle a \rangle \mid \mbox{eqBag} \ (\mbox{cmp2eq cmp}) \ (\mbox{bag } x) \ (\mbox{bag } s)\}) \\ &= \mbox{fast-sort cmp} \end{array}
```

Example: sorting, continued

Let bag : List $\langle a \rangle \rightarrow Bag \langle a \rangle$ be a function that turns a list into a bag.

$$\begin{array}{l} \mbox{function fast-sort' } \langle a \rangle (\mbox{cmp : } a \rightarrow a \rightarrow \mbox{Ordering}) \\ : \mbox{fun } (x : \mbox{List } \langle a \rangle) \Rightarrow \\ & (\mbox{ Sorted } \langle a \rangle \mbox{ cmp} \\ & \& \{ s : \mbox{List } \langle a \rangle \mid \mbox{eqBag (cmp2eq cmp) (bag x) (bag s)} \}) \\ = \mbox{fast-sort cmp} \end{array}$$

The function fast-sort does not change the number of occurrences of the elements. This idiom can again be captured by a higher-order function:

```
type Preserve \langle a, b \rangle (eq : b \rightarrow b \rightarrow Bool) (f : a \rightarrow b) =

fun (x : a) \Rightarrow {y : a | eq (f x) (f y)}

function fast-sort' \langle a \rangle (cmp : a \rightarrow a \rightarrow Ordering)

: (List \langle a \rangle \rightarrow Sorted \langle a \rangle) & Preserve (cmp2eq cmp) bag

= fast-sort cmp
```

Example: sorting, continued

Let bag : List $\langle a \rangle \rightarrow Bag \langle a \rangle$ be a function that turns a list into a bag.

$$\begin{array}{l} \mbox{function fast-sort' } \langle a \rangle (\mbox{cmp}: a \rightarrow a \rightarrow \mbox{Ordering}) \\ : \mbox{fun} (x: \mbox{List} \langle a \rangle) \Rightarrow \\ & (\mbox{Sorted} \langle a \rangle \mbox{cmp} \\ & \& \{ s: \mbox{List} \langle a \rangle \mid \mbox{eqBag} (\mbox{cmp2eq cmp}) (\mbox{bag} x) (\mbox{bag} s) \}) \\ = \mbox{fast-sort cmp} \end{array}$$

The function fast-sort does not change the number of occurrences of the elements. This idiom can again be captured by a higher-order function:

```
type Preserve \langle a, b \rangle (eq : b \rightarrow b \rightarrow Bool) (f : a \rightarrow b) =

fun (x : a) \Rightarrow {y : a | eq (f x) (f y)}

function fast-sort' \langle a \rangle (cmp : a \rightarrow a \rightarrow Ordering)

: (List \langle a \rangle \rightarrow Sorted \langle a \rangle) & Preserve (cmp2eq cmp) bag

= fast-sort cmp
```

A weaker assertion: Preserve (cmp2eq cmp) length.

Alternatively, we can specify fast-sort using a trusted sorting function:

$\begin{array}{l} \mbox{function fast-sort'} \langle a \rangle (\mbox{cmp} : a \rightarrow a \rightarrow \mbox{Ordering}) \\ : \mbox{fun} (x : \mbox{List} \langle a \rangle) \Rightarrow \\ \{s : \mbox{List} \langle a \rangle \mid \mbox{eqList} (\mbox{cmp2eq cmp}) s (\mbox{trusted-sort} x) \} \\ = \mbox{fast-sort cmp} \end{array}$

Alternatively, we can specify fast-sort using a trusted sorting function:

```
\begin{array}{l} \mbox{function fast-sort' (a)(cmp: a \rightarrow a \rightarrow Ordering)} \\ : \mbox{fun (x: List (a)) } \Rightarrow \\ & \{s: List (a) \mid eqList (cmp2eq cmp) \ s \ (trusted-sort x)\} \\ & = fast-sort \ cmp \end{array}
```

Another idiom:

```
type Is \langle a, b \rangle (eq : b \rightarrow b \rightarrow Bool) =
fun (x : a) \Rightarrow { y : b | eq y (f x) }
function fast-sort' \langle a \rangle (cmp : a \rightarrow a \rightarrow Ordering)
: Is (cmp2eq cmp) (trusted-sort \langle a \rangle)
= fast-sort cmp
```

Polymorphic functions such as until do not need to be treated in any special way:

function until $\langle a \rangle$ (p : a \rightarrow Bool) (f : a \rightarrow a) (a : a) : a = if p a then a else until p f (f a)

The function until can be instantiated with a contract type (an invariant).

Demo.

- Quick intro to BPL
- 2 Syntax of contracts
 - 3 Examples
- 4 (Semantics)

- Quick intro to BPL
- 2 Syntax of contracts
 - 3 Examples
- ④ (Semantics)

We have introduced a type system for contracts.

- contracts are an integral part of the programming language (contracts have a much better status than for example in Eiffel),
- implemented (still ongoing work, but available on request),
- we can define our own abstractions,
- higher-order functions are handled in a natural way,
- polymorphic functions can be instantiated to invariants,
- data types can be treated generically,
- it might be possible to perform some contract checks statically and thereby optimize the contracts (also see the paper on the Haskell library),
- open problems: control effects in contracts, implement disjunction.