
Contracts and Types

Andres Löh1

joint work with Johan Jeuring2, Ralf Hinze1, Andreas Schmitz1

1Universität Bonn

2Universiteit Utrecht

March 2, 2007

Motivation

An important criterion for the quality of software is reliability:

correctness: the software does what it is supposed to do

robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of
software:

formal proof of correctness,

type systems (static, dynamic),

systematic testing,

“design by contract”.

These approaches are not competing. They can be used simultaneously.

Andres Löh Contracts and Types 2

Motivation

An important criterion for the quality of software is reliability:

correctness: the software does what it is supposed to do

robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of
software:

formal proof of correctness,

type systems (static, dynamic),

systematic testing,

“design by contract”.

These approaches are not competing. They can be used simultaneously.

Andres Löh Contracts and Types 2

Motivation

An important criterion for the quality of software is reliability:

correctness: the software does what it is supposed to do

robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of
software:

formal proof of correctness,

type systems (static, dynamic),

systematic testing,

“design by contract”.

These approaches are not competing. They can be used simultaneously.

Andres Löh Contracts and Types 2

Design space

static checking dynamic checking

simple properties static types dynamic types

complex properties theorem proving contracts

Andres Löh Contracts and Types 3

Overview

“Design by contract” is a widely used method to design software in the
object-oriented world.

In this talk: Apply the idea to functional programming, while paying
attention to

higher-order functions,

algebraic data types,

parametric (type-)polymorphism.

Idea: we design a type system that includes contracts, but types have a
static and a dynamic component.
Note: in a sufficiently expressive functional language, contracts can also
be implemented purely as a library.

Andres Löh Contracts and Types 4

Overview

“Design by contract” is a widely used method to design software in the
object-oriented world.

In this talk: Apply the idea to functional programming, while paying
attention to

higher-order functions,

algebraic data types,

parametric (type-)polymorphism.

Idea: we design a type system that includes contracts, but types have a
static and a dynamic component.
Note: in a sufficiently expressive functional language, contracts can also
be implemented purely as a library.

Andres Löh Contracts and Types 4

Overview

“Design by contract” is a widely used method to design software in the
object-oriented world.

In this talk: Apply the idea to functional programming, while paying
attention to

higher-order functions,

algebraic data types,

parametric (type-)polymorphism.

Idea: we design a type system that includes contracts, but types have a
static and a dynamic component.

Note: in a sufficiently expressive functional language, contracts can also
be implemented purely as a library.

Andres Löh Contracts and Types 4

Overview

“Design by contract” is a widely used method to design software in the
object-oriented world.

In this talk: Apply the idea to functional programming, while paying
attention to

higher-order functions,

algebraic data types,

parametric (type-)polymorphism.

Idea: we design a type system that includes contracts, but types have a
static and a dynamic component.
Note: in a sufficiently expressive functional language, contracts can also
be implemented purely as a library.

Andres Löh Contracts and Types 4

Structure

1 Quick intro to BPL

2 Syntax of contracts

3 Examples

4 (Semantics)

5 Conclusions

Andres Löh Contracts and Types 5

Structure

1 Quick intro to BPL

2 Syntax of contracts

3 Examples

4 (Semantics)

5 Conclusions

Andres Löh Contracts and Types 6

Syntax: predicate contracts

A contract specifies a desired property. For example:

type Pos = { i : Nat | i
 0 }

If e is a boolean expression (in which x of type τ may occur free), then
{ x : τ | e } is a contract, a so-called predicate contract or flat contract.

type True 〈a〉 = { : a | true }
type Nonempty 〈a〉 = { x : List 〈a〉 | length x 6 0 }

Andres Löh Contracts and Types 7

Parameterized contracts

Contracts can not also be parameterized over values.

type Between m n = { x : Nat | m 6 x && x 6 n }

Andres Löh Contracts and Types 8

Syntax: assigning contracts

We can assert a contract by annotating an expression:

function factors n =
filter (fun i ⇒ n % i 0) (between (1, n))

type Prime = { n : Nat | eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))) }

val mersenne = power (2, 30402457)− 1 : Prime

Andres Löh Contracts and Types 9

Static and dynamic checking

Each type has a static and a dynamic part. For a predicate contract such
as

type Prime = { n : Nat | eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))) }

the static part is Nat.

The dynamic part is a code transformation that wraps the expression in
a run-time test:

power (2, 30402457)− 1

is transformed into

(fun n ⇒ if eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))))

then n
else throw Contract . . .)

(power (2, 30402457)− 1)

Andres Löh Contracts and Types 10

Static and dynamic checking

Each type has a static and a dynamic part. For a predicate contract such
as

type Prime = { n : Nat | eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))) }

the static part is Nat.

The dynamic part is a code transformation that wraps the expression in
a run-time test:

power (2, 30402457)− 1

is transformed into

(fun n ⇒ if eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))))

then n
else throw Contract . . .)

(power (2, 30402457)− 1)

Andres Löh Contracts and Types 10

Syntax: contracts on functions

Contracts can be embedded into type expressions, for example into
function types:

type F 〈a〉 = Nonempty 〈a〉 → Pos

A function with type F 〈a〉 requires its argument to be a non-empty list
with element of type a and ensures that its result is a positive number;
Nonempty is the precondition, Pos the postcondition.

The postcondition may depend on the function argument:

type Inc = fun (n : Nat) ⇒ { r : Nat | n � r }

The variable n is bound in the fun construct and may be used in predicate
contracts to the right.

Andres Löh Contracts and Types 11

Syntax: contracts on functions

Contracts can be embedded into type expressions, for example into
function types:

type F 〈a〉 = Nonempty 〈a〉 → Pos

A function with type F 〈a〉 requires its argument to be a non-empty list
with element of type a and ensures that its result is a positive number;
Nonempty is the precondition, Pos the postcondition.

The postcondition may depend on the function argument:

type Inc = fun (n : Nat) ⇒ { r : Nat | n � r }

The variable n is bound in the fun construct and may be used in predicate
contracts to the right.

Andres Löh Contracts and Types 11

Syntax: contracts on functions

Contracts can be embedded into type expressions, for example into
function types:

type F 〈a〉 = Nonempty 〈a〉 → Pos

A function with type F 〈a〉 requires its argument to be a non-empty list
with element of type a and ensures that its result is a positive number;
Nonempty is the precondition, Pos the postcondition.

The postcondition may depend on the function argument:

type Inc = fun (n : Nat) ⇒ { r : Nat | n � r }

The variable n is bound in the fun construct and may be used in predicate
contracts to the right.

Andres Löh Contracts and Types 11

Contracts: obligations, benefits, violations

A function contract τ1 → τ2 is like a business contract, with obligations
and benefits for both parties.

party obligations benefits

client ensure precondition τ1 require postcondition τ2

supplier ensure postcondition τ2 require precondition τ1

The obligations of one party are the benefits of the other.

If a contract is violated at runtime, the software is erroneous.

If the precondition is violated, the client is to blame.

If the postcondition is violated, the supplier is to blame.

Andres Löh Contracts and Types 12

Contracts: obligations, benefits, violations

A function contract τ1 → τ2 is like a business contract, with obligations
and benefits for both parties.

party obligations benefits

client ensure precondition τ1 require postcondition τ2

supplier ensure postcondition τ2 require precondition τ1

The obligations of one party are the benefits of the other.

If a contract is violated at runtime, the software is erroneous.

If the precondition is violated, the client is to blame.

If the postcondition is violated, the supplier is to blame.

Andres Löh Contracts and Types 12

Contract violations: first-order functions

type PosInc = fun (n : Pos) ⇒ { r : Pos | n � r }

val inc = (fun n ⇒ n + 1) : PosInc
val dec = (fun n ⇒ n− 1) : PosInc

Demo.

Another possibility to define inc is

function inc (n : Pos) : { r : Pos (n � r) | } = n + 1

Note: Contract violations are only detected if a value is used outside of
its specification.

Andres Löh Contracts and Types 13

Contract violations: first-order functions

type PosInc = fun (n : Pos) ⇒ { r : Pos | n � r }

val inc = (fun n ⇒ n + 1) : PosInc
val dec = (fun n ⇒ n− 1) : PosInc

Demo.

Another possibility to define inc is

function inc (n : Pos) : { r : Pos (n � r) | } = n + 1

Note: Contract violations are only detected if a value is used outside of
its specification.

Andres Löh Contracts and Types 13

Contract violations: first-order functions

type PosInc = fun (n : Pos) ⇒ { r : Pos | n � r }

val inc = (fun n ⇒ n + 1) : PosInc
val dec = (fun n ⇒ n− 1) : PosInc

Demo.

Another possibility to define inc is

function inc (n : Pos) : { r : Pos (n � r) | } = n + 1

Note: Contract violations are only detected if a value is used outside of
its specification.

Andres Löh Contracts and Types 13

Function contracts versus flat contracts

It is possible to define flat function contracts:

type PreserveZero = {f : Nat→ Nat | f 0 0}

Andres Löh Contracts and Types 14

Syntax: other contracts

On principle, contract types can be embedded arbitrarily in other types:

List 〈Pos〉

describes a list of positive numbers.

Contracts can be combined using “and”:

Pos & { n : Nat | n 6 4711 }

Note: We do not offer negation or disjunction.

Andres Löh Contracts and Types 15

Syntax: other contracts

On principle, contract types can be embedded arbitrarily in other types:

List 〈Pos〉

describes a list of positive numbers.

Contracts can be combined using “and”:

Pos & { n : Nat | n 6 4711 }

Note: We do not offer negation or disjunction.

Andres Löh Contracts and Types 15

Overview

1 Quick intro to BPL

2 Syntax of contracts

3 Examples

4 (Semantics)

5 Conclusions

Andres Löh Contracts and Types 16

Example: factorization

Let f ′ be the ‘contracted’ variant of f.

val prime-factors′ =
prime-factors : fun (n : Pos) ⇒ (List 〈Prime〉

& { fs : List 〈Nat〉 | product fs n })

The function prime-factors is an inverse of product. This idiom can be
captured using a higher-order function:

type Inverse 〈a, b〉(f : a→ b) (eq : b→ b→ b) =
fun (x : b) ⇒ { y : a | eq (f y) x }

val prime-factors′ =
prime-factors : Pos→ (List 〈Prime〉

& Inverse product (fun x y ⇒ x y))

Andres Löh Contracts and Types 17

Example: factorization

Let f ′ be the ‘contracted’ variant of f.

val prime-factors′ =
prime-factors : fun (n : Pos) ⇒ (List 〈Prime〉

& { fs : List 〈Nat〉 | product fs n })

The function prime-factors is an inverse of product. This idiom can be
captured using a higher-order function:

type Inverse 〈a, b〉(f : a→ b) (eq : b→ b→ b) =
fun (x : b) ⇒ { y : a | eq (f y) x }

val prime-factors′ =
prime-factors : Pos→ (List 〈Prime〉

& Inverse product (fun x y ⇒ x y))

Andres Löh Contracts and Types 17

Example: sorting

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: List 〈a〉 → Sorted 〈a〉 cmp =

fast-sort cmp

The contract Sorted restricts lists to sorted lists.

We have not (yet) specified that the output list is a permutation of the
input list.

Andres Löh Contracts and Types 18

Example: sorting

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: List 〈a〉 → Sorted 〈a〉 cmp =

fast-sort cmp

The contract Sorted restricts lists to sorted lists.

We have not (yet) specified that the output list is a permutation of the
input list.

Andres Löh Contracts and Types 18

Example: sorting, continued

Let bag : List 〈a〉 → Bag 〈a〉 be a function that turns a list into a bag.

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: fun (x : List 〈a〉) ⇒

(Sorted 〈a〉 cmp
& {s : List 〈a〉 | eqBag (cmp2eq cmp) (bag x) (bag s)})

= fast-sort cmp

The function fast-sort does not change the number of occurrences of the
elements. This idiom can again be captured by a higher-order function:

type Preserve 〈a, b〉(eq : b→ b→ Bool) (f : a→ b) =
fun (x : a) ⇒ {y : a | eq (f x) (f y)}

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: (List 〈a〉 → Sorted 〈a〉) & Preserve (cmp2eq cmp) bag
= fast-sort cmp

A weaker assertion: Preserve (cmp2eq cmp) length.

Andres Löh Contracts and Types 19

Example: sorting, continued

Let bag : List 〈a〉 → Bag 〈a〉 be a function that turns a list into a bag.

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: fun (x : List 〈a〉) ⇒

(Sorted 〈a〉 cmp
& {s : List 〈a〉 | eqBag (cmp2eq cmp) (bag x) (bag s)})

= fast-sort cmp

The function fast-sort does not change the number of occurrences of the
elements. This idiom can again be captured by a higher-order function:

type Preserve 〈a, b〉(eq : b→ b→ Bool) (f : a→ b) =
fun (x : a) ⇒ {y : a | eq (f x) (f y)}

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: (List 〈a〉 → Sorted 〈a〉) & Preserve (cmp2eq cmp) bag
= fast-sort cmp

A weaker assertion: Preserve (cmp2eq cmp) length.

Andres Löh Contracts and Types 19

Example: sorting, continued

Let bag : List 〈a〉 → Bag 〈a〉 be a function that turns a list into a bag.

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: fun (x : List 〈a〉) ⇒

(Sorted 〈a〉 cmp
& {s : List 〈a〉 | eqBag (cmp2eq cmp) (bag x) (bag s)})

= fast-sort cmp

The function fast-sort does not change the number of occurrences of the
elements. This idiom can again be captured by a higher-order function:

type Preserve 〈a, b〉(eq : b→ b→ Bool) (f : a→ b) =
fun (x : a) ⇒ {y : a | eq (f x) (f y)}

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: (List 〈a〉 → Sorted 〈a〉) & Preserve (cmp2eq cmp) bag
= fast-sort cmp

A weaker assertion: Preserve (cmp2eq cmp) length.
Andres Löh Contracts and Types 19

Example: sorting, continued

Alternatively, we can specify fast-sort using a trusted sorting function:

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: fun (x : List 〈a〉) ⇒

{s : List 〈a〉 | eqList (cmp2eq cmp) s (trusted-sort x)}
= fast-sort cmp

Another idiom:

type Is 〈a, b〉(eq : b→ b→ Bool) =
fun (x : a) ⇒ { y : b | eq y (f x) }

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: Is (cmp2eq cmp) (trusted-sort 〈a〉)
= fast-sort cmp

Andres Löh Contracts and Types 20

Example: sorting, continued

Alternatively, we can specify fast-sort using a trusted sorting function:

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: fun (x : List 〈a〉) ⇒

{s : List 〈a〉 | eqList (cmp2eq cmp) s (trusted-sort x)}
= fast-sort cmp

Another idiom:

type Is 〈a, b〉(eq : b→ b→ Bool) =
fun (x : a) ⇒ { y : b | eq y (f x) }

function fast-sort′ 〈a〉(cmp : a→ a→ Ordering)
: Is (cmp2eq cmp) (trusted-sort 〈a〉)
= fast-sort cmp

Andres Löh Contracts and Types 20

Example: until

Polymorphic functions such as until do not need to be treated in any
special way:

function until 〈a〉(p : a→ Bool) (f : a→ a) (a : a) : a =
if p a then a else until p f (f a)

The function until can be instantiated with a contract type (an invariant).

Demo.

Andres Löh Contracts and Types 21

Overview

1 Quick intro to BPL

2 Syntax of contracts

3 Examples

4 (Semantics)

5 Conclusions

Andres Löh Contracts and Types 22

Overview

1 Quick intro to BPL

2 Syntax of contracts

3 Examples

4 (Semantics)

5 Conclusions

Andres Löh Contracts and Types 23

Conclusions

We have introduced a type system for contracts.

contracts are an integral part of the programming language (contracts
have a much better status than for example in Eiffel),

implemented (still ongoing work, but available on request),

we can define our own abstractions,

higher-order functions are handled in a natural way,

polymorphic functions can be instantiated to invariants,

data types can be treated generically,

it might be possible to perform some contract checks statically and
thereby optimize the contracts (also see the paper on the Haskell
library),

open problems: control effects in contracts, implement disjunction.

Andres Löh Contracts and Types 24

	Quick intro to BPL
	Syntax of contracts
	Examples
	(Semantics)
	Conclusions

