- Labelled transition systems are relations of the form

$$
P \xrightarrow{a} Q
$$

where P, Q are systems (processes, programs with state, etc...) and a is a label, that is an observation

- LTS are used for defining the behaviour of calculi/systems because they endorse most important techniques for verifying properties (e.g., model checking) and observational equivalence (e.g., bisimulations)
- the labels should be enough to describe faithfully the aspects we are observing, still not too many to be impractible to use.
- In general good LTS are difficult to describe, and often many ad hoc choices can be done (compare e.g. CCS, π-calculus and Ambients).

| Introduction | Directed Bigraphs | RPO and IPO | Algebra |
| :--- | :---: | :---: | :---: | Applications

Principle

What can be observed about a process P are its interactions with the surrounding environment.

Since a reaction system defines completely the behaviour of a system, it contains also the informations about interactions, although hidden.

Problem

Given a reaction system, is it possible to derive a "good" LTS?
By "good" we intend that

- the induced bisimulation must be a congruence
- labels should be not too many (otherwise it is difficult to use in practice)

Ad hoc solutions
Sometimes it can be done ad hoc, e.g, CCS: from reaction rule

$$
\text { a. } P|\overline{\mathrm{a}} . Q \longrightarrow P| Q
$$

we guess the transitions

$$
\alpha . P \xrightarrow{\alpha} P \quad \xrightarrow[{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}]{\stackrel{\rightharpoonup}{a} P^{\prime}}
$$

because we recognize labels as the (minimal) interaction with the surrounding contexts.
Ad hoc solutions are difficult, error prone and require lot of work and experience. (Cf. the plethora of LTS and bisimulations for π-calculus)

Aim

We look for a general, uniform way for deriving LTS from RS.
Davide Grohmann, Marino Miculan From Reactions to Observations: the Directed Bigraphical Mor

The "minimality" can be elegantely expressed as a universal categorical property.

Write \vec{f} for f_{0}, f_{1}.
Call \vec{g} a bound for \vec{f} if $g_{0} \circ f_{0}=g_{1} \circ f_{1}$.
(1) A relative bound (\vec{h}, h) for \vec{f} to \vec{g}.
(2) A relative pushout (RPO) (\vec{h}, h) for \vec{f} to \vec{g} : For any other relative bound (\vec{k}, k), there is a unique mediator j.
(3) An idem pushout (IPO) \vec{g} for \vec{f} : (\vec{g}, id) is an RPO for \vec{f} to \vec{g}.

The "sledgehammer" approach

Define the labels of LTS as the contexts which may fire a rule

$$
\frac{L(P) \longrightarrow Q}{P \xrightarrow{L} Q}
$$

More formally:
$a \xrightarrow{L} \triangleright a^{\prime}$ means $L \circ a=D \circ r \rightarrow D \circ r^{\prime} \bumpeq a^{\prime}$ where $\left(r, r^{\prime}\right)$ is a ground reaction rule

Proposition
The bisimulation induced by the contextual LTS is a congruence.

- But there are infinite labels for each process
- And also labels which do not carry any information about P, i.e., when the redex occurs in L and shares nothing with P.
- How to restrict the set of labels to only those really relevant? that ic "minimal" contexts? From Reactions to Observations: the Directed Bigraphical Mod

Introduction	Directed Bigraphs	RPO and IPO	Algebra	Applications
Labelled transition systems from IPOs				

A transition $\quad a \xrightarrow{L} a^{\prime}$ is such that, for some r, r^{\prime} and D :

- $\left(r, r^{\prime}: J\right)$ is a ground reaction rule
- D is active
- (L, D) is an IPO for (a, r)
- $a^{\prime}=D \circ r^{\prime}$

- Remarkably, the bisimulation induced by IPO LTS is the same of contextual LTS.
- Notice that only contexts which form an IPO for the rule are considered as labels. Thus if the reaction takes place "outside" a, it means that the redex r appears in L and hence the square cannot be "minimal"

For reaching our Aim ("general methodologies for turning RS into LTS"), we need to find general metamodels with RPO and IPO constructions

- A category where RPO exist and can be calculated
- Conditions for establishing when a span \vec{A} has IPOs, and how to calculate these IPOs
- Encoding metodologies, that is, how to represent calculi and systems (with reaction semantics) in these categories.
Then we obtain an "reduced" LTS (whose bisimulation is a congruence) automatically
- Long term aim: "to express as much as possible of worldwide distributed computing in one mathematical model."
- Bigraphs (Milner 2001) aim to be a unifying model of computations based on communications and locality.
- Fundamental: they have RPO and IPO constructions
- References:
- Pure bigraphs: structure and dynamics, R.Milner. (2005)
- Bigraphs and mobile processes (revised), O.-H.Jensen and R.Milner. (2003)

Introduction	Directed Bigraphs	RPO and IPO	Algebra	Applications
Example				

Introduction	Directed Bigraphs	RPO and IPO	Algebra	Applications
How a system evolves: a set of local reaction rules				

The ovals and circles are the nodes; the places which are nested, are the interiors of nodes, while the links (the thin lines) connect ports that lie on the periphery of each node

A REACTION RULE

| Introduction | Directed Bigraphs | RPO and IPO | Algebra |
| :--- | :---: | :---: | :---: | Applications

| Introduction | Directed Bigraphs | RPO and IPO | Algebra |
| :--- | :--- | :--- | :--- |\quad Applications

'ILG

- An algorithm for the construction of (G)RPOs, as an instance of general construction for ILC(PLGraphs).
[P. Sobociński. Deriving process congruences from reaction rules. PhD thesis, University of Aarhus, 2004]
 Bigraphs and mobile processes (revised). Technical Report, University of Cambridge, 2004]

Proposition
 ${ }^{\prime} \mathrm{OLG} \cong{ }^{\prime} \mathrm{ILG}^{\text {op }}$.

Corollary

Let \vec{A} be a span in 'OLG, with a bound \vec{D}. (\vec{B}, B) is an RPO for (\vec{A}, \vec{D}) in 'OLG iff ($\vec{B}^{\circ \rho}, B^{\circ \rho}$) is an RPB for ($\vec{A}^{\circ \rho}, \vec{D}^{\circ P}$) in 'ILG.

| Introduction | Directed Bigraphs | RPO and IPO | Algebra |
| :--- | :---: | :---: | :---: |\quad Applications

We look for a (pre)category 'DLG (of link graphs), which satisfies the following conditions:

- 'ILG and 'OLG are two sub-precategories of ' DLG ;
- 'DLG is self-dual, that is ${ }^{\prime} \mathrm{DLG}={ }^{\prime} \mathrm{DLG}^{o p}$;
- there is a unique algorithm for the construction of RPO and RPB (hence of IPO and IPB).

In Output Linear

- From outside to inside, links can fork, but cannot join.
- Two names of a component can be unified by the context;
- but two names in the context cannot be unified by a component.
- Once a name is created, it is known and unique in all subcomponents.

In Input Linear

Vice versa.

Davide Grohmann, Marino Miculan From Reactions to Observations: the Directed Bigraphical Mod

Introduction	Directed Bigraphs	RPO and IPO	Algebra	Applications
Directed Link Graph				

Edges and Links

- edges become new resources;
- links have a direction from points (i.e. ports and names) to links (i.e. edges and names);
- direction represents the "flow of resource access";
- names are "ports" through which resources are requested or offered;
- composition must respect the direction of requests.

Definition

A polarized interface X is a pair of sets of names $X=\left(X^{-}, X^{+}\right)$; the two components are called downward and upward interfaces, respectively.
A directed link graph $A: X \rightarrow Y$ is $A=(V, E$, ctrl, link) where X and Y are the inner and outer interfaces, V is the set of nodes, E is the set of edges, ctrl: $V \rightarrow \mathcal{K}$ is the control map, and link: $\operatorname{Pnt}(A) \rightarrow \operatorname{Lnk}(A)$ is the link map, where the ports, the points and the links of A are defined as follows:

$$
\begin{gathered}
\operatorname{Prt}(A) \triangleq \sum_{v \in V} \operatorname{ar}(\operatorname{ctrl}(v)) \quad \operatorname{Pnt}(A) \triangleq X^{+} \uplus Y^{-} \uplus \operatorname{Prt}(A) \\
\operatorname{Lnk}(A) \triangleq X^{-} \uplus Y^{+} \uplus E
\end{gathered}
$$

Introduction	Directed Bigraphs	RPO and IPO	Algebra	Applications
Avoiding loops (i.e. vacuous definitions)				

| Introduction | Directed Bigraphs | RPO and IPO | Algebra |
| :--- | :--- | :--- | :--- | Applications

Given two directed link graphs $A_{i}=\left(V_{i}, E_{i}\right.$, ctrl $_{i}$, link $\left._{i}\right): X_{i} \rightarrow X_{i+1}$ $(i=0,1)$, the composition $A_{1} \circ A_{0}: X_{0} \rightarrow X_{2}$ is defined as follows: $A_{1} \circ A_{0} \triangleq(V, E, c t r l$, link $)$, where $V \triangleq V_{0} \uplus V_{1}, c t r l \triangleq c t r l_{0} \uplus c t r l_{1}$, $E \triangleq E_{0} \uplus E_{1}$ and link : $X_{0}^{+} \uplus X_{2}^{-} \uplus P \rightarrow E \uplus X_{0}^{-} \uplus X_{2}^{+}$is defined as follows (where $P=\operatorname{Prt}\left(A_{0}\right) \uplus \operatorname{Prt}\left(A_{1}\right)$):
$\operatorname{link}(p) \triangleq \begin{cases}\operatorname{link}_{0}(p) & \text { if } p \in X_{0}^{+} \uplus \operatorname{Prt}\left(A_{0}\right) \text { and } \operatorname{link}_{0}(p) \in E_{0} \uplus X_{0}^{-} \\ \operatorname{link}_{1}(x) & \text { if } p \in X_{0}^{+} \uplus \operatorname{Prt}\left(A_{0}\right) \text { and } \operatorname{link}_{0}(p)=x \in X_{1}^{+} \\ \operatorname{link}_{1}(p) & \text { if } p \in X_{2}^{-} \uplus \operatorname{Prt}\left(A_{1}\right) \text { and } \operatorname{link}_{1}(p) \in E_{1} \uplus X_{2}^{+} \\ \operatorname{link}_{0}(x) & \text { if } p \in X_{2}^{-} \uplus \operatorname{Prt}\left(A_{1}\right) \text { and } \operatorname{link}_{1}(p)=x \in X_{1}^{-} .\end{cases}$
The identity link graph of X is $i d_{X} \triangleq\left(\emptyset, \emptyset, \emptyset_{\mathcal{K}}, I d_{X_{-\uplus X^{+}}}\right): X \rightarrow X$.

We must forbid connections between names of the same interface in order to avoid undefined link maps after compositions. Hence, the link map cannot connect downward and upward names of the same interface, i.e., the following condition must hold:

$$
\left(\operatorname{link}\left(X^{+}\right) \cap X^{-}\right) \cup\left(\operatorname{link}\left(Y^{-}\right) \cap Y^{+}\right)=\emptyset
$$

There are directed link graphs which are neither input-linear nor output-linear, nor any combination of these

$$
C \triangleq(\emptyset,\{e\}, \emptyset,\{(x, e),(y, e),(z, e),(w, e)\}):\{x, y\} \rightarrow\{z, w\}
$$

Davide Grohmann, Marino Miculan From Reactions to Observations: the Directed Bigraphical Mor

| Introduction | Directed Bigraphs | RPO and IPO | Algebra |
| :--- | :--- | :--- | :--- | Applications

Consistency and IPOs

- There are consistency conditions for the existence of bounds and co-bounds;
- there is a unique algorithm to compute IPO and IPB.

Note

- These conditions and construction subsume those given by Jensen and Milner for output linear link graphs.
- We can derive consistency conditions and an algorithm to compute IPO in input linear link graphs.
- The directed bigraphs can be defined as the composition of standard place graphs (i.e. Milner's one) and directed link graphs.
- An RPO (IPO) in 'DBig is constructed by combining an RPO (IPO) in 'DLG with an RPO (IPO) in 'PLG

RPO and RPB exist

In 'DLG all RPO and RPB exist, and there is a unique method for constructing RPO's and RPB's.

Theorem

In 'DLG, whenever a span \vec{A} of link graphs has a bound \vec{D}, there exists an $R P O(\vec{B}, B)$ for \vec{A} to \vec{D}.

Corollary

In 'DLG, whenever a co-span \vec{D} of link graphs has a co-bound \vec{A}, there exists an $R P B(\vec{B}, B)$ for \vec{A} to \vec{D}.

| Introduction | Directed Bigraphs | RPO and IPO | Algebra |
| :--- | :--- | :--- | :--- |\quad Applications

- In many situations we do not want to distinguish bigraphs differing only on the identity of nodes and edges;
- the category DBig is constructed from 'DBig forgetting the identity of nodes and edges and any idle edge;
- two directed bigraphs G and H are lean-support equivalent, written $G \approx H$, if they are support equivalent after removing any idle edges.

Introduction	Directed Bigraphs	RPO and IPO	Algebra	Applications
The λ-calculus				

Syntax

$$
M, N::=x|\lambda x \cdot M| M N
$$

Call-by-name Semantics
$(\lambda x . M) N \rightarrow M[N / x]$
$M \rightarrow M^{\prime}$
$M N \rightarrow M^{\prime} N$
$N \rightarrow N^{\prime}$
$M N \rightarrow M N^{\prime}$

Call-by-value Semantics

$$
(\lambda x \cdot M) V \rightarrow M[V / x]
$$

$$
M \rightarrow M^{\prime}
$$

$$
\frac{M \rightarrow M^{\prime}}{M N \rightarrow M^{\prime} N}
$$

$$
N \rightarrow N^{\prime}
$$

$$
M N \rightarrow M N^{\prime}
$$

[^0]parts.

var_{x}

lam_{x}

app

$d^{d e} f_{x}$

Single Substitutions

We give a signature for representing the λ－calculus＂with single substitutions＂，that is where a substitution is performed once for each variable occurrence．

Translator operator

$$
\begin{aligned}
\llbracket x \rrbracket & =v a r_{x} \\
\llbracket \lambda x . M \rrbracket & =\operatorname{lam} m_{x} \circ\left(\llbracket M \rrbracket 人 \Delta^{x}\right) \\
\llbracket M N \rrbracket & =\operatorname{app} \circ(\llbracket M \rrbracket 人 \llbracket N \rrbracket)
\end{aligned}
$$

$a p p \circ\left(l a m_{x}\right.$ 人 $\left.d_{1}\right) \rightarrow s u b_{x, y} \circ\left(i d_{1}\right.$ 人def $\left.f_{y}\right)$

$s_{u b_{x, y}} \circ\left(i d_{1}\right.$ 人 Δ^{x} 人def $\left.f_{y}\right) \rightarrow i d_{1}$

Introduction	Directed Bigraphs	RPO and IPO	Algebra	Applications
Conclusions and Future Works				

－We introduce directed bigraphs，a more general model that subsumes both input－and output－linear bigraphs；
－we present a unique algorithm to compute both RPO（IPO） and RPB（IPB）；
－finally we have an algebra for directed bigraphs，based on a set of elementary bigraphs；
－we show an encoding of the λ－calculus in the directed bigraphs（without bindings）．
－We want to derive a weak Its for the λ－calculus，using a construction defined by Jensen and compare the corresponding weak bisimilarity with known equivalences；
－we want to apply the model to fusion calculus and ν－calculus．

[^0]: Values
 A value is either a λ-abstraction or a variable

