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Labelled transition systems

Labelled transition systems are relations of the form

P
a−→ Q

where P,Q are systems (processes, programs with state,
etc. . . ) and a is a label, that is an observation

LTS are used for defining the behaviour of calculi/systems
because they endorse most important techniques for verifying
properties (e.g., model checking) and observational
equivalence (e.g., bisimulations)

the labels should be enough to describe faithfully the aspects
we are observing, still not too many to be impractible to use.

In general good LTS are difficult to describe, and often many
ad hoc choices can be done (compare e.g. CCS, π-calculus
and Ambients).
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Reactions systems

Semantics can be also specified by reaction (or “reduction”)
rules, which are pairs “(redex, reactum)”. For instance:

(5 + 3, 8) written as 5 + 3 −→ 8

((λx .M)N,M{N/x}) written as (λx .M)N −→ M{N/x}

A reaction system (RS) is specified by a set R of such rules,
and possibly a family of active contexts where redexes have to
be found in order to fire the rule.

(l , r) ∈ R
C[l ] −→ C[r ]

Only a silent, “internal” state chage.

No interaction with the surrounding environment, thus no
observation is specified.

RS are much easier to state than LTS, but are not as useful!
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Labelled Transition Systems from Reaction Systems?

Principle

What can be observed about a process P are its interactions with
the surrounding environment.

Since a reaction system defines completely the behaviour of a
system, it contains also the informations about interactions,
although hidden.

Problem

Given a reaction system, is it possible to derive a “good” LTS?

By “good” we intend that

the induced bisimulation must be a congruence

labels should be not too many (otherwise it is difficult to use
in practice)
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Ad hoc solutions

Sometimes it can be done ad hoc, e.g, CCS: from reaction rule

a.P|ā.Q −→ P|Q

we guess the transitions

α.P
α−→ P

P
a−→ P ′ Q

ā−→ Q ′

P|Q τ−→ P ′|Q ′

because we recognize labels as the (minimal) interaction with the
surrounding contexts.
Ad hoc solutions are difficult, error prone and require lot of work
and experience. (Cf. the plethora of LTS and bisimulations for
π-calculus)

Aim

We look for a general, uniform way for deriving LTS from RS.
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The “sledgehammer” approach

Define the labels of LTS as the contexts which may fire a rule

L(P) −→ Q

P
L−→ Q

More formally:

LABELLED TRANSITIONS FOR BIGRAPHS?

Several process calculi have transitions P ! " P ′. But labels ! are specific
to each calculus; e.g. in π-calculus, x(z).P xy

" {y/z}P .

Uniform approach via bigraphs Use contexts as labels:

a L " a′ means L ◦ a = D ◦ r " D ◦ r′ ! a′

where (r, r′) is a ground reaction rule

L

a D
r

Need to cut down the possible labels L; make the square a pushout?

43

Proposition

The bisimulation induced by the contextual LTS is a congruence.

But there are infinite labels for each process
And also labels which do not carry any information about P,
i.e., when the redex occurs in L and shares nothing with P.
How to restrict the set of labels to only those really relevant?
that is, “minimal” contexts?
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Relative and Idempotent Pushouts (Leifer, Milner, 2000)

The “minimality” can be elegantely expressed as a universal
categorical property.

RELATIVE AND IDEM PUSHOUTS

f0 f1

k0 j

g0 g1

k1
h0 h1

f0 f1

g0

g0

f0 f1

g1g0

h0 h1

idh h g1

g1

k

(2)(1) (3)

Write !f for f0, f1.

Call !g a bound for !f if

g0 ◦ f0 = g1 ◦ f1.

(1) A relative bound (!h, h) for !f to !g.

(2) A relative pushout (RPO) (!h, h) for !f to !g : For any other relative
bound (!k, k), there is a unique mediator j.

(3) An idem pushout (IPO) !g for !f : (!g, id) is an RPO for !f to !g.
44
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Labelled transition systems from IPOs
WIDE LABELLED TRANSITIONS in terms of IPOS

A transition a L !λ a′ is such that, for some r, r′ and D:

• (r, r′ : J) is a ground reaction rule
• D is active and λ = width(D)(width(J))
• (L, D) is an IPO for (a, r)
• a′ = D ◦ r′

L

a D
r

. . . where λ is a location of I, i.e. a subset of its regions: λ ⊆ width(I).

The width of a bigraph G : I → J is a function on natural numbers:

width(G) : width(I)→width(J)

width(G)(i)
def
= the unique root j such that j >G i .

48

Remarkably, the bisimulation induced by IPO LTS is the same
of contextual LTS.

Notice that only contexts which form an IPO for the rule are
considered as labels. Thus if the reaction takes place
“outside” a, it means that the redex r appears in L and hence
the square cannot be “minimal”
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The Plan: Metamodels with RPOs

For reaching our Aim (“general methodologies for turning RS into
LTS”), we need to find general metamodels with RPO and IPO
constructions

A category where RPO exist and can be calculated

Conditions for establishing when a span ~A has IPOs, and how
to calculate these IPOs

Encoding metodologies, that is, how to represent calculi and
systems (with reaction semantics) in these categories.

Then we obtain an “reduced” LTS (whose bisimulation is a
congruence) automatically.
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Bigraphical Models

Long term aim:“to express as much as possible of worldwide
distributed computing in one mathematical model.”

Bigraphs (Milner 2001) aim to be a unifying model of
computations based on communications and locality.

Fundamental: they have RPO and IPO constructions

References:

Pure bigraphs: structure and dynamics, R.Milner. (2005)
Bigraphs and mobile processes (revised), O.-H.Jensen and
R.Milner. (2003)
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Example

The ovals and
circles are the
nodes; the places,
which are nested,
are the interiors of
nodes, while the
links (the thin lines)
connect ports that
lie on the periphery
of each node

A TYPICAL BIGRAPH

key

lock
admin

message

6
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How a system evolves: a set of local reaction rules

HOW A SYSTEM MAY RECONFIGURE . . . . . .

L

A

K

M

. . . and how it
reconfigures

A pattern . . .

A REACTION RULE
A

L

A

K

7
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Result of the reaction

. . . . . . AND THE NEW CONFIGURATION

A

M

. . . and how it
reconfigures

A pattern . . .

A REACTION RULE

L

A

K

A

8
Davide Grohmann, Marino Miculan From Reactions to Observations: the Directed Bigraphical Model

Introduction Directed Bigraphs RPO and IPO Algebra Applications

A bigraph = a place graph + a link graph

RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names

v2

v3

0 1

v0

v1

v1

v0

v2

0

v3

1

v1

v3
v0

v2

1

2

x0 x1

y0 y1

21

y0 y1

0

0 x0 x1

22
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Output Linear Link Graph

’OLG

An algorithm for the
construction of RPOs;

consistency conditions on
the existence of bounds;

an algorithm for the
construction of IPOs.

[O. H. Jensen and R. Milner.
Bigraphs and mobile processes
(revised). Technical Report,
University of Cambridge, 2004]

A0

w

v0

zx y

e

1
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Input Linear Link Graph

’ILG

An algorithm for the
construction of (G)RPOs, as
an instance of general
construction for
ILC(PLGraphs).

[P. Sobociński. Deriving process
congruences from reaction rules.
PhD thesis, University of Aarhus,
2004]
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w

v0

zx y

e

1
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Duality

A0 A1

B0 B1

D0 D1

B

Aop
0 Aop

1

Bop
0 Bop

1

Dop
0 Dop

1

Bop

Proposition
′OLG ∼= ′ILGop.

Corollary

Let ~A be a span in ′OLG, with a bound ~D. (~B,B) is an RPO for
(~A, ~D) in ′OLG iff (~Bop,Bop) is an RPB for (~Aop, ~Dop) in ′ILG.
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Limitations of Input or Output Linear Link Graphs

In Output Linear

From outside to inside, links can
fork, but cannot join.

Two names of a component can be
unified by the context;

but two names in the context
cannot be unified by a component.

Once a name is created, it is known
and unique in all subcomponents.

In Input Linear

Vice versa.

4.4. RPO nei Link Graph Aciclici 33
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Figura 4.4: Esempio di costruzione di un RPO nei link graph aciclici.
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Subsuming both input- and output-linear link graphs?

We look for a (pre)category
′DLG (of link graphs), which
satisfies the following conditions:

′ILG and ′OLG are two
sub-precategories of ′DLG;
′DLG is self-dual, that is
′DLG = ′DLGop;

there is a unique algorithm
for the construction of RPO
and RPB (hence of IPO and
IPB). ′LG

′OLG ′ILG

′DLG“ ”
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Directed Link Graph I

Edges and Links

edges become new resources;

links have a direction from points
(i.e. ports and names) to links
(i.e. edges and names);

direction represents the “flow of
resource access”;

names are “ports” through which
resources are requested or offered;

composition must respect the
direction of requests.

5.3. IPO nei Link Graph Orientati 69
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Figura 5.3: Una coppia consistente !A di link graph con bound !B.

quindi A0(p) = (D0 ◦ A0)(p) = (D1 ◦ A1)(p), l’unico modo per dimostrare ciò

è far vedere che D1(p) = x ∈ X−
1 e A1(x) = A0(p), ma questo è un assurdo.

Per chiarezza espositiva, prima di procedere oltre si considererà un semplice

esempio.

Esempio 5.3.3 (link graph consistenti) Si consideri la coppia di link graph !A :

(∅, ∅) → ( !X−, !X+) in figura 5.3, dove X−
0 = ∅, X+

0 = {x0, y0, z0}, X−
1 = {x1, y1, z1}

e X+
1 = ∅. I nodi con pedice 2 sono condivisi. (I controlli non sono presenti nel

disegno). La coppia !A è consistente con bound !B come mostrato. È molto semplice

verificare le tre condizioni di consistenza in questo caso.

Ora, assumendo le condizioni di consistenza della definizione 5.3.1, si costruirà

una famiglia non vuota di IPO per !A; la costruzione seguirà le linee guida di quella

precedentemente illustrata per i place graph. Come già detto, è evidente che quando
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Directed Link Graph II

Definition

A polarized interface X is a pair of sets of names X = (X−,X+);
the two components are called downward and upward interfaces,
respectively.
A directed link graph A : X → Y is A = (V ,E , ctrl , link) where X
and Y are the inner and outer interfaces, V is the set of nodes, E
is the set of edges, ctrl : V → K is the control map, and
link : Pnt(A) → Lnk(A) is the link map, where the ports, the
points and the links of A are defined as follows:

Prt(A),
∑
v∈V

ar(ctrl(v)) Pnt(A) , X+ ] Y− ] Prt(A)

Lnk(A) , X− ] Y + ] E
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Composition in ′DLG

Given two directed link graphs Ai = (Vi ,Ei , ctrli , linki ) : Xi → Xi+1

(i = 0, 1), the composition A1 ◦ A0 : X0 → X2 is defined as follows:
A1 ◦A0 , (V ,E , ctrl , link), where V , V0 ]V1, ctrl , ctrl0 ] ctrl1,
E , E0 ] E1 and link : X+

0 ]X−
2 ]P → E ]X−

0 ]X+
2 is defined as

follows (where P = Prt(A0) ] Prt(A1)):

link(p) ,


link0(p) if p ∈ X+

0 ] Prt(A0) and link0(p) ∈ E0 ] X−
0

link1(x) if p ∈ X+
0 ] Prt(A0) and link0(p) = x ∈ X+

1

link1(p) if p ∈ X−
2 ] Prt(A1) and link1(p) ∈ E1 ] X+

2

link0(x) if p ∈ X−
2 ] Prt(A1) and link1(p) = x ∈ X−

1 .

The identity link graph of X is idX , (∅, ∅, ∅K, IdX−]X+) : X → X .
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Avoiding loops (i.e. vacuous definitions)

We must forbid connections
between names of the same
interface in order to avoid
undefined link maps after
compositions. Hence, the link
map cannot connect downward
and upward names of the same
interface, i.e., the following
condition must hold: A

v

x y

B

w

x y

(link(X+) ∩ X−) ∪ (link(Y−) ∩ Y +) = ∅
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Embeddings

Output Linear Link
Graphs

FO : ′OLG → ′DLG

(b)

w

v0

zx y

e

1

A0

w

v0

zx y

e

1

Input Linear Link
Graphs

FI : ′ILG → ′DLG
A0

w

v0

zx y

e

1

(a)
w

v0

zx y

e

1
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New Link Graphs

There are directed link graphs
which are neither input-linear nor
output-linear, nor any
combination of these.

(a)

w

v0

z

v1

x y

e

(b)

w

v0

z

v1

x y

e

(c)

w z

x y

e

Fig. 1. Examples of directed link graphs.

Definition 4. Let A : X → Y be a link graph.
A link l ∈ Lnk(A) is idle if it is not in the image of the link map (i.e.,

p #∈ link(Lnk(A)). The link graph A is lean if there are no idle links.
A link l is open if it is an inner inward and name or an outer outward name

(i.e., l ∈ X− ∪ Y +); it is closed it it is an edge. A point p is open if link(p) is
an open link; otherwise it is closed.

Two points p1, p2 are peer if they are mapped to the same link, that is
link(p1) = link(p2).

Proposition 1. A link graph A : X → Y is epi iff there are no peer names in
Y − and no idle names in Y +. Dually, A is mono iff there are no idle names in
X− and no peer names in X+.

4.2 RPO for directed link graphs

costruzione dell’RPO, collegamenti con gli RPO in ILG e OLG

4.3 IPO in directed link graphs

costruzione degli IPO

5 Directed bigraphs

mettere assieme le cose, e mostrare che viene una categoria wide-monoidal.

6 Conclusions

References

1. R. Milner. Pure bigraphs: Structure and dynamics. Inf. Comput., 204(1):60–122,
2006.

3

C , (∅, {e}, ∅, {(x , e), (y , e), (z , e), (w , e)}) : {x , y} → {z ,w}
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RPO and RPB

RPO and RPB exist

In ′DLG all RPO and RPB exist, and there is a unique method for
constructing RPO’s and RPB’s.

Theorem

In ′DLG, whenever a span ~A of
link graphs has a bound ~D, there
exists an RPO (~B,B) for ~A to ~D.

Corollary

In ′DLG, whenever a co-span ~D
of link graphs has a co-bound ~A,
there exists an RPB (~B,B) for ~A
to ~D.
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IPO and IPB

Consistency and IPOs

There are consistency conditions for the existence of bounds
and co-bounds;

there is a unique algorithm to compute IPO and IPB.

Note

These conditions and construction subsume those given by
Jensen and Milner for output linear link graphs.

We can derive consistency conditions and an algorithm to
compute IPO in input linear link graphs.
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Directed Bigraphs

The directed bigraphs can
be defined as the
composition of standard
place graphs (i.e. Milner’s
one) and directed link
graphs.

An RPO (IPO) in ′DBig is
constructed by combining an
RPO (IPO) in ′DLG with
an RPO (IPO) in ′PLG.

82 6. Bigrafi Orientati
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Figura 6.1: Una coppia consistente !A di bigrafi con IPO !B.

(con le opportune interfacce), e si può verificare che questo è un candidato RPO in
′ORBG per !A rispetto a !B. Quindi, per ipotesi esiste un’unica freccia di mediazione

tra l’RPO ( !B, id) ed il candidato appena costruito. Il place graph che è il costituente

di tale mediatore è l’unica freccia di mediazione in ′PLG tra ( !BP , id) e ( !CP , CP ).

Un’argomentazione analoga si può applicare a ′ORLG .

(⇐) Si supponga che si abbiano gli IPO in ′PLG e ′ORLG , allora con un

argomentazione analoga a quella proposta per gli RPO, si ha la tesi.

Esempio 6.2.3 (IPO di un bigrafo) Per illustrare gli IPO in ′ORBG , si possono

combinare l’esempio 3.3.3 per i place graph e l’esempio 5.3.3 per i link graph, poiché

essi hanno lo stesso insieme di nodi. In entrambi i casi il bound !B è un IPO. La

combinazione è rappresentata in figura 6.1. Di nuovo si può osservare che il bound
!B è un IPO.
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Abstract Directed Bigraphs

In many situations we do not want to distinguish bigraphs
differing only on the identity of nodes and edges;

the category DBig is constructed from ′DBig forgetting the
identity of nodes and edges and any idle edge;

two directed bigraphs G and H are lean-support equivalent,
written G m H, if they are support equivalent after removing
any idle edges.

Davide Grohmann, Marino Miculan From Reactions to Observations: the Directed Bigraphical Model

Introduction Directed Bigraphs RPO and IPO Algebra Applications

Elementary Bigraphs Grohmann, Miculan

y

x

!"x
y :(∅, y) → (x, ∅) closure

y

x1x2. . .xn

. . . !y
X :(∅, X) → (∅, y) substitution

x

y1y2. . .ym

. . . "Y
x :(x, ∅) → (Y, ∅) fusion

1:ε → 1 a barren root

1 2 merge:2 → 1 mapping 2 sites in 1 root

m+1 . . . m+n 1 . . . n γm,n:m + n → n + m swapping m with n

x1x2. . .xn

x1x2. . .xm. . .

. . .
K!x+

!x− :〈(#x−, ∅)〉 → 〈(∅, #x+)〉 a discrete ion

Fig. 1. Elementary Bigraphs

The following proposition shows that every bigraph can be expressed in a normal
form, called (again) discrete normal form (DNF). We will use D, Q and N to denote
primes, discrete prime bigraphs, and the discrete molecules respectively.

Proposition 4.1 (discrete normal form) In DBig every bigraph G, discrete D,
discrete and prime Q and discrete molecule N can be described by an expression of
the respective following form:

G = (ω ⊗ idn) ◦D ◦ (ω′ ⊗ idm) (1)
where ω, ω′ satisfy the conditions given in Theorem 3.9(i);

D = α⊗ ((Q0 ⊗ · · · ⊗Qn−1) ◦ (π ⊗ iddom( !Q))) (2)

Q = (mergen+p ⊗ id∅,Y +) ◦ (idn ⊗N0 ⊗ · · · ⊗Np−1) ◦ (π ⊗ id(Y −,∅)) (3)

N = (K!x+

!x− ⊗ id∅,Y +) ◦Q. (4)

Furthermore, the expression is unique up to isomorphisms on the parts.

Proof. The proof is quite similar to the proof of Theorem 3.9. !

We can use these equations for normalizing any bigraph G as follows; first, we
apply equations (1), (2) to G once, obtaining an expression containing discrete
and prime bigraphs Q0, . . . , Qn−1. These are decomposed further using equations
(3), (4) repeatedly: each Qi is decomposed into an expression containing molecules
Ni,0, . . . , Ni,pi−1, each of which is decomposed in turn into an ion containing another
discrete and prime bigraph Q′

i,j . The last two steps are repeated recursively until
the ions are atoms. Note that the unit 1 is a special case of Q when n = p = 0.

In Figure 2 we give a set of axioms which we prove to be sound and complete.
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Discrete Normal Form in DBig

Proposition

In DBig every bigraph G, discrete D, discrete and prime Q and
discrete molecule N can be described by an expression of the
respective following form:

G = (ω ⊗ idn) ◦ D ◦ (ω′ ⊗ idm)

D = α⊗ ((Q0 ⊗ · · · ⊗ Qn−1) ◦ (π ⊗ id
dom(~Q)

))

Q = (mergen+p ⊗ id∅,Y +) ◦ (idn ⊗ N0 ⊗ · · · ⊗ Np−1) ◦ (π ⊗ idY−,∅)

N = (K~x+

~x− ⊗ id∅,Y +) ◦ Q.

Furthermore, the expression is unique up to isomorphisms on the
parts.
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The λ-calculus

Syntax

M,N ::= x | λx .M | MN

Call-by-name Semantics

(λx .M)N → M[N/x ]
M → M ′

MN → M ′N
N → N ′

MN → MN ′

Call-by-value Semantics

(λx .M)V → M[V /x ]
M → M ′

MN → M ′N
N → N ′

MN → MN ′

Values

A value is either a λ-abstraction or a variable.

Davide Grohmann, Marino Miculan From Reactions to Observations: the Directed Bigraphical Model



Introduction Directed Bigraphs RPO and IPO Algebra Applications

Signature for the λ-calculus

Grohmann, Miculan

varx

x

var

lamx

x

λ

app

app

subx,y

x y

sub

defx

x

def

Fig. 3. The signature for the λ-calculus.

A value is either a λ-abstraction or a variable; values are ranged over by V .
The call-by-name reduction semantics is defined by the following rules

(λx.M)N → M [N/x] (β)
M → M ′

MN → M ′N

N → N ′

MN → MN ′

while the call-by-value reduction semantics is defined by the following rules

(λx.M)V → M [V/x] (βv)
M → M ′

MN → M ′N

N → N ′

MN → MN ′

In Figure 3 we give a signature for representing the λ-calculus “with single
substitutions”, that is where a substitution is performed once for each variable
occurrence. This signature resembles Milner’s encoding using binding bigraphs, but
in directed bigraphs we do not need to introduce further binding structures.

We can define a translator operator !·" : Λ → DBig as follows:

!x" = varx !λx.M" = lamx ◦ (!M" # !x) !MN" = app ◦ (!M" # !N")

Intuitively, a λ-term M is represented by a ground bigraph !M" : ε → 〈(∅, X+)〉
whose place hierarchy reflects the syntactic tree of M and the outer upwards names
X+ are the free variables of M . Each λ-expression is represented by a control and
a local resource which is bound to a upward name in the inner interface.

Proposition 5.1 Let M,N be two λ-terms; then, M ≡α N iff !M" = !N".
Let us now see how we can represent the two semantics of the λ-calculus. For

the call-by-name semantics, we define the controls lam and def as passive, sub and
app as active. The reaction rules are given in Figure 4.

For the call-by-value λ-calculus, we have to replace the Appcbn rule with two
rules Appcbv-var and Appcbv-lam (Figure 5) corresponding to the two cases of values
where the application can be performed.

For both variants, we can prove the following result:

Proposition 5.2 Let M,M ′ be two λ-terms.

(i) If M → M ′ then !M" →∗ !M ′";
(ii) If !M" →∗ !M ′" then M →∗ M ′.

Proof. By induction on the lenght of traces.

(i) The application of β (or βv) is encoded by applying Appcbn (or one of Appcbv-var

and Appcbv-lam) on the correct sub-bigraph, i.e. the one which encodes the right
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Single Substitutions

We give a signature for
representing the λ-calculus “with
single substitutions”, that is
where a substitution is performed
once for each variable occurrence.

Translator operator

JxK = varx

Jλx .MK = lamx ◦ (JMK 	 Mx)

JMNK = app ◦ (JMK 	 JNK)
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Call-by-name reactions Grohmann, Miculan

app

λ

0

x

1

app ◦ (lamx ! id1) → subx,y ◦ (id1 ! defy)

sub

def

1

x

0

Appcbn

sub

def

10

subx,y ◦ (id1 ! !x ! defy) → id1

0 Subdispose

def

1

x

var

"#x
y ◦ (vary ! defy) → "#x

y ◦ (id1 ! defy)

1

def

1

x

Subvar

Fig. 4. Reactions for the call-by-name λ-calculus.

app

λ

0

x

var

z

app ◦ (lamx ! varz) → subx,y ◦ (id1 ! (defy ◦ varz))

sub

def

var

z

x

0

Appcbv-var

app

λ

0

x

λ

1

z

app ◦ (lamx ! lamz) → subx,y ◦ (id1 ! (defy ◦ lamz))

sub

def

λ

1

zx

0

Appcbv-lam

Fig. 5. Reactions for the call-by-value λ-calculus.
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Call-by-value reactions

Grohmann, Miculan

app

λ

0

x

1

app ◦ (lamx ! id1) → subx,y ◦ (id1 ! defy)

sub

def

1

x

0

Appcbn

sub

def
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subx,y ◦ (id1 ! !x ! defy) → id1

0 Subdispose

def

1

x

var

"#x
y ◦ (vary ! defy) → "#x

y ◦ (id1 ! defy)

1

def

1

x

Subvar

Fig. 4. Reactions for the call-by-name λ-calculus.

app

λ

0

x

var

z

app ◦ (lamx ! varz) → subx,y ◦ (id1 ! (defy ◦ varz))

sub

def

var

z

x

0

Appcbv-var

app

λ

0

x

λ

1

z

app ◦ (lamx ! lamz) → subx,y ◦ (id1 ! (defy ◦ lamz))

sub

def

λ

1

zx

0

Appcbv-lam

Fig. 5. Reactions for the call-by-value λ-calculus.
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Conclusions and Future Works

We introduce directed bigraphs, a more general model that
subsumes both input- and output-linear bigraphs;

we present a unique algorithm to compute both RPO (IPO)
and RPB (IPB);

finally we have an algebra for directed bigraphs, based on a
set of elementary bigraphs;

we show an encoding of the λ-calculus in the directed
bigraphs (without bindings).

We want to derive a weak lts for the λ-calculus, using a
construction defined by Jensen and compare the
corresponding weak bisimilarity with known equivalences;

we want to apply the model to fusion calculus and ν-calculus.
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