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State complexity

• In automata theory, descriptional complexity issues have been

of interest for decades.

• It is well known that the number of states of the minimal DFA

(deterministic state complexity) for a given language can be

exponentially larger than the number of states in a minimal

NFA (nondeterministic state complexity).

• The minimal DFA is unique but there may be several minimal

NFAs.

• Many cases where the maximal blow-up of size when

converting an NFA to DFA does not occur.

• Some sufficient conditions have been identified which imply

that the deterministic and nondeterministic state complexities

are the same (for example, bideterminism).
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Transition complexity

• While the state-minimal DFA is also minimal with respect to

the number of transitions, this is not necessarily the case with

NFAs.

• Even allowing one more state in an NFA can produce a

considerable reduction in the number of transitions.

• The number of transitions may be even a better measure for

the size of an NFA than the number of states.

• Furthermore, allowing ε-transitions in an NFA (ε-NFAs) it is

possible to have automata with even less transitions than

NFAs.

3



Bideterministic automata: state minimality

• A bideterministic automaton is any deterministic automaton

such that its reversal automaton is also deterministic

• A bideterministic automaton is a state-minimal DFA (easy)

• Any bideterministic automaton is a state-minimal NFA (Tamm

and Ukkonen 2003)

• What about transition minimality?
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Bideterministic automata: transition minimality

The results presented in the current paper:

• A bideterministic automaton is a transition-minimal NFA

(preliminary result in my PhD thesis, 2004)

• Transition minimality of bideterministic automata is not unique

• The necessary and sufficient conditions for a bideterministic

automaton to be a unique transition-minimal NFA

• More generally: a bideterministic automaton is a

transition-minimal ε-NFA.
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Universal automaton

A universal automaton is a canonical automaton of a given regular

language.

Let Σ be a finite alphabet and let L ⊆ Σ∗.

A factorization of L is a maximal couple (with respect to the

inclusion) of languages (U, V ) such that UV ⊆ L.

The universal automaton of L is UL = (Q, Σ, E, I, F ) where

Q is the set of factorizations of L,

I = {(U, V ) ∈ Q | ε ∈ U},

F = {(U, V ) ∈ Q | U ⊆ L},

E = {((U, V ), a, (U ′, V ′)) ∈ Q × a × Q | Ua ⊆ U ′}.

Fact: universal automaton of the language L is a finite automaton

that accepts L.

6



Universal automaton: the construction

S. Lombardy (2002) has given the following effective method for

constructing the universal automaton from the minimal DFA of the

given language:

Let A = (Q, Σ, E, {q0}, F ) be the minimal DFA accepting L and

let P be the set of states of the automaton D(AR).

Let P∩ be the closure of P under intersection, without the empty

set: if X, Y ∈ P∩ and X ∩ Y 6= ∅ then X ∩ Y ∈ P∩.

Then, the universal automaton UL is isomorphic to (P∩, Σ, H, I, J)

where H = {(X, a, Y ) ∈ P∩ × Σ × P∩ | X · a ⊆ Y and

for all p ∈ X, p · a 6= ∅},

I = {X ∈ P∩ | q0 ∈ X}, and

J = {X ∈ P∩ | X ⊆ F}.
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Automaton morphism and the universal

automaton

Let A = (Q, Σ, E, I, F ) and A′ = (Q′, Σ, E′, I ′, F ′) be two NFAs.

Then a mapping µ from Q into Q′ is a morphism of automata if

and only if p ∈ I implies pµ ∈ I ′, p ∈ F implies pµ ∈ F ′, and

(p, a, q) ∈ E implies (pµ, a, qµ) ∈ E′ for all p, q ∈ Q and a ∈ Σ.

Known properties:

• Let A be a trim automaton that accepts L. Then there exists

an automaton morphism from A into UL.

• In particular, UL contains as a subautomaton every

state-minimal NFA accepting L.
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Universal automaton of a bideterministic

language

Now, let us construct the universal automaton of a bideterministic

language L.

Let A = (Q, Σ, E, {q0}, {qf}) be a trim bideterministic automaton.

It is known that A is the minimal DFA. Since the reversal

automaton of A is deterministic, D(AR) = AR and the set P as

well as P∩ consist of all sets {q} such that q ∈ Q.

It is easy to see that the transition relation H of UL is equal to E,

I = {q0}, and J = {qf}.

Conclusion. Any bideterministic automaton is the universal

automaton for the given language.

By using algebraic considerations, basically the same fact has been

observed by L. Polak (2004).
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Let A = (Q, Σ, E, {q0}, {qf}) be a bideterministic automaton and

A′ = (Q′, Σ, E′, I ′, F ′) be another automaton accepting the same

language.

Since A = UL(A), then there exists an automaton morphism µ

from A′ into A.

Next, we will see that µ defines an automaton transformation.

Proposition. µ is surjective.

Proof. Since A is a state-minimal NFA then for each state q of A

there exists at least one state q′ of A′ such that q′µ = q.
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Proposition. There is a transition (p, a, q) of A if and only if

there is a transition (p′, a, q′) of A′ such that p′µ = p and q′µ = q.

Proof. The “if” part follows from the definition of automaton

morphism.

The “only-if” part is proved by contradiction.

Suppose that (p, a, q) is a transition of A but there is no transition

(p′, a, q′) of A′ such that p′µ = p and q′µ = q.

Let B = (Q, Σ, E \ {(p, a, q)}, {q0}, {qf}) be a subautomaton of A.

It is clear that µ is an automaton morphism from A′ into B.

It is known that for any automaton morphism from X into Y ,

it holds that L(X) ⊆ L(Y ). Therefore, L(A′) ⊆ L(B).

Since L(A) = L(A′), we also get L(A) ⊆ L(B). But, since A is the

unique minimal DFA and B has less transitions than A, it must be

that L(B) ⊂ L(A), a contradiction.
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It is not difficult to see that µ defines an automaton transformation

from A′ to A.

Let Q = {q0, ..., qn−1}.

Since µ is surjective, there exists a partition Π = {Q′

0, ..., Q
′

n−1} of

Q′ into n = |Q| disjoint non-empty subsets so that for every q′ ∈ Q′

and i ∈ {0, ..., n − 1}, q′ ∈ Q′

i if and only if q′µ = qi.

Using Π, A′ is transformed into an equivalent automaton A′′:

for every i ∈ {0, ..., n − 1}, all states in Q′

i are merged into a single

state q′′i of A′′.

It is clear that A′′ is isomorphic to A.

The number of transitions of A′′ is no more than the number of

transitions of A′.

Proposition. Any bideterministic automaton is a transition-

minimal NFA.
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Uniqueness of transition minimality

Differently from the state minimality, a bideterministic automaton

is not necessarily the only transition-minimal NFA for the

corresponding language.

The necessary and sufficient conditions for the unique

transition-minimality are given by the following theorem:

Theorem. A trim bideterministic automaton

A = (Q, Σ, E, {q0}, {qf}) is a unique transition-minimal NFA if

and only if the following three conditions hold:

(i) q0 6= qf ,

(ii) indegree(q0) > 0 or outdegree(q0) = 1,

(iii) indegree(qf ) = 1 or outdegree(qf ) > 0.
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Unambiguous ε-NFA

S. John (2003, 2004) has developed a theory to reduce the number

of transitions of ε-NFAs.

Let A be an ε-NFA (Q, Σ, E, I, F ) where E is partitioned into two

subrelations EΣ = {(p, a, q) | (p, a, q) ∈ E, a ∈ Σ} and

Eε = {(p, ε, q) | (p, ε, q) ∈ E}.

The automaton A is unambiguous if and only if for each w ∈ L(A)

there is exactly one path that yields w (without considering

ε-transitions).
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Slices

Let L ⊆ Σ∗ be a regular language, U, V ⊆ Σ∗, a ∈ Σ.

We call (U, a, V ) a slice of L if and only if U 6= ∅, V 6= ∅ and

UaV ⊆ L.

Let S be the set of all slices of L.

A partial order on S is defined by:

(U1, a, V1) ≤ (U2, a, V2) if and only if U1 ⊆ U2 and V1 ⊆ V2.

The set of maximal slices of L is defined by

Smax := {(U, a, V ) ∈ S | there is no (U ′, a, V ′) ∈ S with

(U, a, V ) < (U ′, a, V ′)}.
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Transition-minimal unambiguous ε-NFA

Let S′ ⊆ S be a finite slicing of L. In order to read an automaton

AS′ out of S′, each slice from S′ is transformed into a transition of

AS′ , and these transitions are connected via states and ε-transitions

using a follow-relation −→ which is defined basically by:

(U1, a, V1) −→ (U2, b, V2) if and only if U1a ⊆ U2 and bV2 ⊆ V1

Theorem (S. John). The three following statements are

equivalent for languages L ⊆ Σ∗ if the slicing Smax of L induces an

unambiguous ε-NFA ASmax
:

1) L is accepted by an ε-NFA

2) L = L(AS′) for some finite slicing S′ ⊆ S

3) Smax is finite

Furthermore, |Smax| ≤ |S′| ≤ |EΣ|.

Corollary (S. John). An unambiguous ε-NFA ASmax
has the

minimum number of non-ε-transitions.
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Transition slice

For each non-ε-transition t of an automaton A, we define the

transition slice of t to be the slice (Ut, l(t), Vt) of L(A) where

– Ut is the set of strings yielded by the paths from an initial state

to the source state of t,

– l(t) is the label of t, and

– Vt is the set of strings yielded by the paths from the target state

of t to an accepting state.
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Using the theory by S. John it is not difficult to prove that a

bideterministic automaton is a transition-minimal ε-NFA.

Lemma. For a bideterministic automaton A, let t1 and t2 be two

different transitions of A, with the same label a ∈ Σ and with the

corresponding transition slices (Ut1 , a, Vt1) and (Ut2 , a, Vt2). Then

Ut1 ∩ Ut2 = ∅ and Vt1 ∩ Vt2 = ∅.

Proof. By contradiction. Supposing Ut1 ∩ Ut2 6= ∅ implies that A is

not deterministic. Similarly Vt1 ∩ Vt2 = ∅.
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Proposition. Each transition slice of a bideterministic

automaton A is maximal.

Proof. Suppose there is a transition t such that its transition slice

(Ut, a, Vt) is not maximal. Then (Ut, a, Vt) < (U, a, V ) for some

maximal slice (U, a, V ). There is a string uav ∈ L(A) such that

u ∈ U and v ∈ V but either u /∈ Ut or v /∈ Vt. However, there must

be some transition t′ with the transition slice (Ut′ , a, Vt′) such that

u ∈ Ut′ and v ∈ Vt′ and (Ut′ , a, Vt′) ≤ (U, a, V ). Now, we know that

Ut ⊆ U and Ut′ ⊆ U , and therefore also Ut ∪ Ut′ ⊆ U .

In the same way, Vt ∪ Vt′ ⊆ V .

Next, we can see that (Ut ∪ Ut′ , a, Vt ∪ Vt′) is a slice of L(A).

Then there is a word xay ∈ L(A) such that x ∈ Ut and y ∈ Vt′ .

Since, by Lemma, there does not exist a transition t′′ of A such

that x ∈ Ut′′ , a = l(t′′) and y ∈ Vt′′ , it can be shown that

xay /∈ L(A), a contradiction.
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Theorem. A bideterministic automaton A has the minimum

number of transitions among all ε-NFAs accepting L(A).

Proof. The set of maximal slices of L(A) is given by

Smax := {(Ut, l(t), Vt) | t ∈ E}, |Smax| = |E|.

The set Smax is used to form the ε-NFA ASmax
by converting every

slice from Smax into a transition of ASmax
and connecting these

transitions by ε-transitions according to the follow-relation.

Since A is bideterministic, A is clearly unambiguous.

There is a one-to-one correspondence between the accepting paths

of A and ASmax
. Thus, ASmax

is also unambiguous.

By Theorem (John) and Corollary (John), ASmax
has a minimum

number of non-ε-transitions. Since the number of non-ε-transitions

of ASmax
is equal to the number of transitions of A, and there are

no ε-transitions in A, we conclude that A is transition-minimal

among all ε-NFAs accepting the given language.
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