On Transition Minimality of Bideterministic Automata

Hellis Tamm

This talk is based on a paper to be presented at the conference on Developments in Language Theory (DLT 2007), Turku, July 2007, and to be published in LNCS 4588.

State complexity

- In automata theory, descriptional complexity issues have been of interest for decades.
- It is well known that the number of states of the minimal DFA (deterministic state complexity) for a given language can be exponentially larger than the number of states in a minimal NFA (nondeterministic state complexity).
- The minimal DFA is unique but there may be several minimal NFAs.
- Many cases where the maximal blow-up of size when converting an NFA to DFA does not occur.
- Some sufficient conditions have been identified which imply that the deterministic and nondeterministic state complexities are the same (for example, bideterminism).

Transition complexity

- While the state-minimal DFA is also minimal with respect to the number of transitions, this is not necessarily the case with NFAs.
- Even allowing one more state in an NFA can produce a considerable reduction in the number of transitions.
- The number of transitions may be even a better measure for the size of an NFA than the number of states.
- Furthermore, allowing ϵ-transitions in an NFA (ϵ-NFAs) it is possible to have automata with even less transitions than NFAs.

Bideterministic automata: state minimality

- A bideterministic automaton is any deterministic automaton such that its reversal automaton is also deterministic
- A bideterministic automaton is a state-minimal DFA (easy)
- Any bideterministic automaton is a state-minimal NFA (Tamm and Ukkonen 2003)
- What about transition minimality?

Bideterministic automata: transition minimality

The results presented in the current paper:

- A bideterministic automaton is a transition-minimal NFA (preliminary result in my PhD thesis, 2004)
- Transition minimality of bideterministic automata is not unique
- The necessary and sufficient conditions for a bideterministic automaton to be a unique transition-minimal NFA
- More generally: a bideterministic automaton is a transition-minimal ϵ-NFA.

Universal automaton

A universal automaton is a canonical automaton of a given regular language.

Let Σ be a finite alphabet and let $L \subseteq \Sigma^{*}$.
A factorization of L is a maximal couple (with respect to the inclusion) of languages (U, V) such that $U V \subseteq L$.

The universal automaton of L is $U_{L}=(Q, \Sigma, E, I, F)$ where Q is the set of factorizations of L,

$$
\begin{aligned}
& I=\{(U, V) \in Q \mid \epsilon \in U\} \\
& F=\{(U, V) \in Q \mid U \subseteq L\} \\
& E=\left\{\left((U, V), a,\left(U^{\prime}, V^{\prime}\right)\right) \in Q \times a \times Q \mid U a \subseteq U^{\prime}\right\}
\end{aligned}
$$

Fact: universal automaton of the language L is a finite automaton that accepts L.

Universal automaton: the construction

S. Lombardy (2002) has given the following effective method for constructing the universal automaton from the minimal DFA of the given language:

Let $A=\left(Q, \Sigma, E,\left\{q_{0}\right\}, F\right)$ be the minimal DFA accepting L and let P be the set of states of the automaton $D\left(A^{R}\right)$.
Let P_{\cap} be the closure of P under intersection, without the empty set: if $X, Y \in P_{\cap}$ and $X \cap Y \neq \emptyset$ then $X \cap Y \in P_{\cap}$.
Then, the universal automaton U_{L} is isomorphic to $\left(P_{\cap}, \Sigma, H, I, J\right)$
where $H=\left\{(X, a, Y) \in P_{\cap} \times \Sigma \times P_{\cap} \mid X \cdot a \subseteq Y\right.$ and
for all $p \in X, p \cdot a \neq \emptyset\}$,
$I=\left\{X \in P_{\cap} \mid q_{0} \in X\right\}$, and
$J=\left\{X \in P_{\cap} \mid X \subseteq F\right\}$.

Automaton morphism and the universal automaton

Let $A=(Q, \Sigma, E, I, F)$ and $A^{\prime}=\left(Q^{\prime}, \Sigma, E^{\prime}, I^{\prime}, F^{\prime}\right)$ be two NFAs. Then a mapping μ from Q into Q^{\prime} is a morphism of automata if and only if $p \in I$ implies $p \mu \in I^{\prime}, p \in F$ implies $p \mu \in F^{\prime}$, and $(p, a, q) \in E$ implies $(p \mu, a, q \mu) \in E^{\prime}$ for all $p, q \in Q$ and $a \in \Sigma$.

Known properties:

- Let A be a trim automaton that accepts L. Then there exists an automaton morphism from A into U_{L}.
- In particular, U_{L} contains as a subautomaton every state-minimal NFA accepting L.

Universal automaton of a bideterministic language

Now, let us construct the universal automaton of a bideterministic language L.

Let $A=\left(Q, \Sigma, E,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$ be a trim bideterministic automaton. It is known that A is the minimal DFA. Since the reversal automaton of A is deterministic, $D\left(A^{R}\right)=A^{R}$ and the set P as well as P_{\cap} consist of all sets $\{q\}$ such that $q \in Q$.

It is easy to see that the transition relation H of U_{L} is equal to E, $I=\left\{q_{0}\right\}$, and $J=\left\{q_{f}\right\}$.

Conclusion. Any bideterministic automaton is the universal automaton for the given language.

By using algebraic considerations, basically the same fact has been observed by L. Polak (2004).

Let $A=\left(Q, \Sigma, E,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$ be a bideterministic automaton and $A^{\prime}=\left(Q^{\prime}, \Sigma, E^{\prime}, I^{\prime}, F^{\prime}\right)$ be another automaton accepting the same language.

Since $A=U_{L(A)}$, then there exists an automaton morphism μ from A^{\prime} into A.

Next, we will see that μ defines an automaton transformation.
Proposition. μ is surjective.
Proof. Since A is a state-minimal NFA then for each state q of A there exists at least one state q^{\prime} of A^{\prime} such that $q^{\prime} \mu=q$.

Proposition. There is a transition (p, a, q) of A if and only if there is a transition $\left(p^{\prime}, a, q^{\prime}\right)$ of A^{\prime} such that $p^{\prime} \mu=p$ and $q^{\prime} \mu=q$.

Proof. The "if" part follows from the definition of automaton morphism.

The "only-if" part is proved by contradiction.
Suppose that (p, a, q) is a transition of A but there is no transition ($p^{\prime}, a, q^{\prime}$) of A^{\prime} such that $p^{\prime} \mu=p$ and $q^{\prime} \mu=q$.
Let $B=\left(Q, \Sigma, E \backslash\{(p, a, q)\},\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$ be a subautomaton of A. It is clear that μ is an automaton morphism from A^{\prime} into B.

It is known that for any automaton morphism from X into Y, it holds that $L(X) \subseteq L(Y)$. Therefore, $L\left(A^{\prime}\right) \subseteq L(B)$.

Since $L(A)=L\left(A^{\prime}\right)$, we also get $L(A) \subseteq L(B)$. But, since A is the unique minimal DFA and B has less transitions than A, it must be that $L(B) \subset L(A)$, a contradiction.

It is not difficult to see that μ defines an automaton transformation from A^{\prime} to A.

Let $Q=\left\{q_{0}, \ldots, q_{n-1}\right\}$.
Since μ is surjective, there exists a partition $\Pi=\left\{Q_{0}^{\prime}, \ldots, Q_{n-1}^{\prime}\right\}$ of Q^{\prime} into $n=|Q|$ disjoint non-empty subsets so that for every $q^{\prime} \in Q^{\prime}$ and $i \in\{0, \ldots, n-1\}, q^{\prime} \in Q_{i}^{\prime}$ if and only if $q^{\prime} \mu=q_{i}$.

Using Π, A^{\prime} is transformed into an equivalent automaton $A^{\prime \prime}$: for every $i \in\{0, \ldots, n-1\}$, all states in Q_{i}^{\prime} are merged into a single state $q_{i}^{\prime \prime}$ of $A^{\prime \prime}$.

It is clear that $A^{\prime \prime}$ is isomorphic to A.
The number of transitions of $A^{\prime \prime}$ is no more than the number of transitions of A^{\prime}.

Proposition. Any bideterministic automaton is a transitionminimal NFA.

Uniqueness of transition minimality

Differently from the state minimality, a bideterministic automaton is not necessarily the only transition-minimal NFA for the corresponding language.

The necessary and sufficient conditions for the unique transition-minimality are given by the following theorem:

Theorem. A trim bideterministic automaton $A=\left(Q, \Sigma, E,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$ is a unique transition-minimal NFA if and only if the following three conditions hold:
(i) $q_{0} \neq q_{f}$,
(ii) indegree $\left(q_{0}\right)>0$ or outdegree $\left(q_{0}\right)=1$,
(iii) indegree $\left(q_{f}\right)=1$ or outdegree $\left(q_{f}\right)>0$.

Unambiguous ϵ-NFA

S. John $(2003$, 2004) has developed a theory to reduce the number of transitions of ϵ-NFAs.

Let A be an ϵ-NFA (Q, Σ, E, I, F) where E is partitioned into two subrelations $E_{\Sigma}=\{(p, a, q) \mid(p, a, q) \in E, a \in \Sigma\}$ and $E_{\epsilon}=\{(p, \epsilon, q) \mid(p, \epsilon, q) \in E\}$.

The automaton A is unambiguous if and only if for each $w \in L(A)$ there is exactly one path that yields w (without considering ϵ-transitions).

Slices

Let $L \subseteq \Sigma^{*}$ be a regular language, $U, V \subseteq \Sigma^{*}, a \in \Sigma$.
We call (U, a, V) a slice of L if and only if $U \neq \emptyset, V \neq \emptyset$ and $U a V \subseteq L$.

Let S be the set of all slices of L.
A partial order on S is defined by:
$\left(U_{1}, a, V_{1}\right) \leq\left(U_{2}, a, V_{2}\right)$ if and only if $U_{1} \subseteq U_{2}$ and $V_{1} \subseteq V_{2}$.
The set of maximal slices of L is defined by
$S_{\max }:=\left\{(U, a, V) \in S \mid\right.$ there is no $\left(U^{\prime}, a, V^{\prime}\right) \in S$ with $\left.(U, a, V)<\left(U^{\prime}, a, V^{\prime}\right)\right\}$.

Transition-minimal unambiguous ϵ-NFA

Let $S^{\prime} \subseteq S$ be a finite slicing of L. In order to read an automaton $A_{S^{\prime}}$ out of S^{\prime}, each slice from S^{\prime} is transformed into a transition of $A_{S^{\prime}}$, and these transitions are connected via states and ϵ-transitions using a follow-relation \longrightarrow which is defined basically by: $\left(U_{1}, a, V_{1}\right) \longrightarrow\left(U_{2}, b, V_{2}\right)$ if and only if $U_{1} a \subseteq U_{2}$ and $b V_{2} \subseteq V_{1}$

Theorem (S. John). The three following statements are equivalent for languages $L \subseteq \Sigma^{*}$ if the slicing $S_{\max }$ of L induces an unambiguous $\epsilon-N F A A_{S_{\max }}$:

1) L is accepted by an $\epsilon-N F A$
2) $L=L\left(A_{S^{\prime}}\right)$ for some finite slicing $S^{\prime} \subseteq S$
3) $S_{\text {max }}$ is finite

Furthermore, $\left|S_{\max }\right| \leq\left|S^{\prime}\right| \leq\left|E_{\Sigma}\right|$.
Corollary (S. John). An unambiguous ϵ-NFA $A_{S_{\max }}$ has the minimum number of non- ϵ-transitions.

Transition slice

For each non- ϵ-transition t of an automaton A, we define the transition slice of t to be the slice $\left(U_{t}, l(t), V_{t}\right)$ of $L(A)$ where

- U_{t} is the set of strings yielded by the paths from an initial state to the source state of t,
$-l(t)$ is the label of t, and
- V_{t} is the set of strings yielded by the paths from the target state of t to an accepting state.

Using the theory by S. John it is not difficult to prove that a bideterministic automaton is a transition-minimal ϵ-NFA.

Lemma. For a bideterministic automaton A, let t_{1} and t_{2} be two different transitions of A, with the same label $a \in \Sigma$ and with the corresponding transition slices $\left(U_{t_{1}}, a, V_{t_{1}}\right)$ and $\left(U_{t_{2}}, a, V_{t_{2}}\right)$. Then $U_{t_{1}} \cap U_{t_{2}}=\emptyset$ and $V_{t_{1}} \cap V_{t_{2}}=\emptyset$.

Proof. By contradiction. Supposing $U_{t_{1}} \cap U_{t_{2}} \neq \emptyset$ implies that A is not deterministic. Similarly $V_{t_{1}} \cap V_{t_{2}}=\emptyset$.

Proposition. Each transition slice of a bideterministic automaton A is maximal.

Proof. Suppose there is a transition t such that its transition slice $\left(U_{t}, a, V_{t}\right)$ is not maximal. Then $\left(U_{t}, a, V_{t}\right)<(U, a, V)$ for some maximal slice (U, a, V). There is a string uav $\in L(A)$ such that $u \in U$ and $v \in V$ but either $u \notin U_{t}$ or $v \notin V_{t}$. However, there must be some transition t^{\prime} with the transition slice $\left(U_{t^{\prime}}, a, V_{t^{\prime}}\right)$ such that $u \in U_{t^{\prime}}$ and $v \in V_{t^{\prime}}$ and $\left(U_{t^{\prime}}, a, V_{t^{\prime}}\right) \leq(U, a, V)$. Now, we know that $U_{t} \subseteq U$ and $U_{t^{\prime}} \subseteq U$, and therefore also $U_{t} \cup U_{t^{\prime}} \subseteq U$.
In the same way, $V_{t} \cup V_{t^{\prime}} \subseteq V$.
Next, we can see that $\left(U_{t} \cup U_{t^{\prime}}, a, V_{t} \cup V_{t^{\prime}}\right)$ is a slice of $L(A)$.
Then there is a word $x a y \in L(A)$ such that $x \in U_{t}$ and $y \in V_{t^{\prime}}$. Since, by Lemma, there does not exist a transition $t^{\prime \prime}$ of A such that $x \in U_{t^{\prime \prime}}, a=l\left(t^{\prime \prime}\right)$ and $y \in V_{t^{\prime \prime}}$, it can be shown that xay $\notin L(A)$, a contradiction.

Theorem. A bideterministic automaton A has the minimum number of transitions among all ϵ-NFAs accepting $L(A)$.

Proof. The set of maximal slices of $L(A)$ is given by $S_{\max }:=\left\{\left(U_{t}, l(t), V_{t}\right) \mid t \in E\right\},\left|S_{\max }\right|=|E|$.
The set $S_{\text {max }}$ is used to form the ϵ-NFA $A_{S_{\max }}$ by converting every slice from $S_{\max }$ into a transition of $A_{S_{\max }}$ and connecting these transitions by ϵ-transitions according to the follow-relation.

Since A is bideterministic, A is clearly unambiguous.
There is a one-to-one correspondence between the accepting paths of A and $A_{S_{\max }}$. Thus, $A_{S_{\max }}$ is also unambiguous.

By Theorem (John) and Corollary (John), $A_{S_{\max }}$ has a minimum number of non- ϵ-transitions. Since the number of non- ϵ-transitions of $A_{S_{\max }}$ is equal to the number of transitions of A, and there are no ϵ-transitions in A, we conclude that A is transition-minimal among all ϵ-NFAs accepting the given language.

