
Stack-based language
Objects and methods (current work)

A relational proof system for information flow
security of unstructured bytecode

Lennart Beringer

Lehrstuhl für Theoretische Informatik
Ludwig-Maximilians-Universität München

IoC Tallinn, December 11th, 2007

Lennart Beringer Relational proof system for non-interference



Stack-based language
Objects and methods (current work)

What is information flow security?

Design choice: object identity is oberservable (I do that) vs
extensional object identity (equality of dynamic class and fields)

Informal definition

A system is called (information flow) secure if an outside attacker
cannot obtain knowledge about internal secret information by
interacting with the system (i.e. by repeatedly applying some input
and observing the output).

Precise notions of terms attacker, public/private, information,
system vary.

Concrete notions exist for various modeling frameworks:

Automata/ state machines (Goguen/Meseguer, Rushby)

Process calculi

Programming languages
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Information flow analysis in programming languages

Classify data (or variables, objects, locations,. . . ) according to
security levels L/H (or lattice)

Non-interference: initial differences in high data are not
semantically observable at the low domain

Example (imperative language):
C secure ⇐⇒ ∀ s s ′. s =L s ′ ⇒ JCKs ≈L JCKs ′

Various possibilities for semantics JCK: terminal states,
termination sensitive. . .

Examples for s =L s ′ ⇐⇒ s(l) = s ′(l) and

JCKs ≈L JCKs ′ ⇐⇒ ∀ t t ′. s
C−→ t ⇒ s ′

C−→ t ′ ⇒ t =L t ′:

l :=h (insecure; direct flow) vs. h := l (secure)
if h = 0 then l :=1 else l :=2 (insecure; indirect flow)
if h = 0 then l :=1 else l :=1 and l :=h; l :=1 (secure, but
rejected by many (static) verification techniques)
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Static analysis: type system by Volpano/Smith/Irvine

Types τ = security levels (high/low), with low @ high

Typing rules prevent assignments l := e if e depends on a
high variable, or if a surrounding conditional (or loop guard)
depends on a high boolean expression

Γ associates (fixed) types to variables
Typing judgements:

` e : τ : τ is a upper bound on the variables occurring in e,
i.e. e does not depend on any variable x with Γ(x) A τ
τ ` C : τ is an lower bound on the variables assigned to in C ,
i.e. variables x with Γ(x) @ τ remain unchanged

` e : τ Γ(x) = τ

τ ` x :=e

τ ` C τ ` D

τ ` C ; D

` b : τ τ ` Ci

τ ` if b then C1 else C2

. . . plus subtyping rules.

Theorem

If low ` C then C is secure.
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Evaluation of Volpano/Smith/Irvine

Soundness result ensures that programs with direct (example
l :=h) or indirect flows (example if h = 0 then l :=1 else l :=2)
are eliminated, while e.g. h := l is rightly admitted

Shortcoming I: subprograms of well-typed programs are
required to be secure, e.g. l :=h; l :=1 is rejected

Shortcoming II: no direct compatibility with program
transformations. E.g. if h = 0 then l :=1 else l :=1 and
if h = 0 then l :=1; x :=2 else x :=2; l :=1 where x : low are
rejected

Generalisation to flow-sensitivity (Hunt & Sands) removes
some of the shortcomings

Our aim

Present better type system, for low-level language (PCC
motivation)
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Non-interference for bytecode

Bytecode: low-level (virtual machine level) programming language

Components of states: operand stack, store, heap

Code: load/store between store and operand stack, arithmetic
operations, object creation and manipulation, method calls,
unstructured control flow (concurrency, exceptions,. . . )

Current type systems are essentially bytecode-level versions of VSI:

require essentially structured control flow: employ a pc-type
in order to ensure no low assignments (or method returns)
under a high branch discipline (or CDR,. . . )

cannote directly exploit if a program transformations preserve
non-interference

Goal: present a proof system for unstructured bytecode that does
not flatly reject all low assignments (or returns) in high branches,
and is compatible with program transformations
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1 Stack-based language

2 Objects and methods (current work)
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Stack-based language

Simple programs: no heap, no methods.

Big-step operational semantics: P ` ([ ], σ), ` ⇓ v

(Termination-insensitive) Non-interference for bytecode

Program label ` is non-interferent for S : X → L, if
P ` ([ ], σ), ` ⇓ v and P ` ([ ], τ), ` ⇓ w implies v ∼low w
whenever σ ∼S τ .
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Idea

1 Non-interference is a special case of similarity:

Similarity

Labels ` and `′ are (low) similar for α ∈ L∗ and S, notation
` ∼(α,S) `′, if P ` (O, σ), ` ⇓ v and P ` (O′, τ), `′ ⇓ w implies
v ∼low w whenever σ ∼S τ and O ∼α O′.

2 Generalise pairs (α,S) to relational shape descriptions β, such
that identity of values may be traced (not: formal variable
dependencies) through both computations

3 Derive relational proof system where abstractions β play the
role of types (applying to the initial states)
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Relational shape descriptions (RSD’s)

C: infinite set of colours, ranged over by γ.

Definition

A RSD is a structure β = ((S , Γ),N, (T ,∆)) where S ,T ∈ C∗,
Γ,∆ ∈ X ⇀fin C and N ∈ C ⇀fin L, such that
cod S ∪ cod T ∪ cod Γ ∪ cod ∆ ⊆ dom N.
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Interpretation of RSD’s (informal)

Definition

The interpretation of γ in a state O, σ with respect to (S , Γ)
(where |O| = |S |) is the set of values at the positions containing γ:

JγK(S ,Γ)((O, σ)) = {O(n) | S(n) = γ} ∪ {σ(x) | Γ(x) = γ}

Definition

States (O1, σ) and (O2, τ) are indistinguishable with respect to β,
notation (O1, σ) ∼β (O2, τ), if for all γ ∈ dom N,

JγK(S ,Γ)((O, σ)) and JγK(T ,∆)((O′, σ′)) are either empty or
singleton sets

If JγK(S ,Γ)((O, σ)) = {v} and JγK(T ,∆)((O′, σ′)) = {w} and
N(γ) = low then v = w
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Similarity

Definition

Code points ` and `′ are (β, p)-similar if v ∼p w holds whenever
P ` s, ` ⇓ v and P ` t, `′ ⇓ w and s ∼β t.

Now derive proof system for (β, p)-similarity.

one-side rules (high rules, or propagation of identifiers),
incl. rule of symmetry

two-sided rules (low rules)

structural rules (axioms, inject, subtyping)

Lennart Beringer Relational proof system for non-interference



Stack-based language
Objects and methods (current work)

One-sided rules

ι β(ι) β′(ι) Φ(ι)

load x ((S, Γ), N, (T , ∆)) ((γ :: S, Γ), N, (T , ∆)) Γ↓x = γ
store x ((γ :: S, Γ), N, (T , ∆)) ((S, Γ[x 7→ γ]), N, (T , ∆))
pop ((γ :: S, Γ), N, (T , ∆)) ((S, Γ), N, (T , ∆))
dup ((γ :: S, Γ), N, (T , ∆)) ((γ :: γ :: S, Γ), N, (T , ∆))
swap ((γ1 :: γ2 :: S, Γ), N, (T , ∆)) ((γ2 :: γ1 :: S, Γ), N, (T , ∆))

iconst v ((S, Γ), N, (T , ∆)) ((γ :: S, Γ), N[γ 7→ q], (T , ∆)) γ /∈ dom N

binop ⊕ ((γ1 :: γ2 :: S, Γ), N, (T , ∆)) ((γ :: S, Γ), N[γ 7→q], (T , ∆))

8>><>>:
N↓γ2 = q2
N↓γ1 = q1
γ /∈ dom N
q = q1 t q2

RInstr
M(`) = ι Φ(ι) G `t ` + 1 ∗ `′ : β′(ι) → p

G `f ` ∗ `′ : β(ι) → p

RGoto
M(`) = goto ¯̀ G `t

¯̀∗ `′ : β → p

G `f ` ∗ `′ : β → p
RSymm

G−1 `b `′ ∗ ` : β−1 → p

G `b ` ∗ `′ : β → p

RIf

G `t ` + 1 ∗ `′ : ((S , Γ), N, (T , ∆)) → p
M(`) = iftrue ¯̀ G `t

¯̀∗ `′ : ((S , Γ), N, (T , ∆)) → p

G `f ` ∗ `′ : ((γ :: S , Γ), N, (T , ∆)) → p
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Two-sided and structural rules

RConstConst

M(`) = iconst v M ′(`′) = iconst w
v ∼q w γ /∈ dom N

G `t ` + 1 ∗ `′ + 1 : ((γ : S , Γ), N[γ 7→ q], (γ :: T , ∆)) → p

G `f ` ∗ `′ : ((S , Γ), N, (T , ∆)) → p

RRetRetH
M(`) = vreturn M ′(`′) = vreturn

G `f ` ∗ `′ : ((γ1 :: S , Γ), N, (γ2 :: T , ∆)) → high

RRetRet
M(`) = vreturn M ′(`′) = vreturn N↓γ = p

G `f ` ∗ `′ : ((γ :: S , Γ), N, (γ :: T , ∆)) → p

RIfIf

M(`) = iftrue ¯̀ M ′(`′) = iftrue ¯̀
1 N↓γ = low

G `t ` + 1 ∗ `′ + 1 : ((S , Γ), N, (T , ∆)) → p
G `t

¯̀∗ ¯̀
1 : ((S , Γ), N, (T , ∆)) → p

G `f ` ∗ `′ : ((γ :: S , Γ), N, (γ :: T , ∆)) → p

Ax
G↓(`, `′) = (β, p)

G `t ` ∗ `′ : β → p
Sub

G `b ` ∗ `′ : β → q β <: β′ q v p

G `b ` ∗ `′ : β′ → p
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Transformation rules

Derivable rules, e.g.

M(`) = store x M(` + 1) = store y M ′(`′) = store y M ′(`′ + 1) = store x
G `t ` + 2 ∗ `′ + 2 : ((S , Γ[x 7→ γ1][y 7→ γ2]), N, (T , ∆[y 7→ γ3][x 7→ γ4])) → p

G `f ` ∗ `′ : ((γ1 :: γ2 :: S , Γ), N, (γ3 :: γ4 :: T , ∆)) → p

Admissible rules, e.g.

M(`) = iconst v M(` + 1) = store x M(` + 2) = iconst w M(` + 3) = store y
M ′(`′) = iconst w M ′(`′ + 1) = store y
M ′(`′ + 2) = iconst v M ′(`′ + 3) = store x

γ1 6= γ2 {γ1, γ2} ∩ dom N = ∅ G `t ` + 4 ∗ `′ + 4 : β → p
β = ((S , Γ[x 7→ γ1][y 7→ γ2]), N[γ1 7→ q1][γ2 7→ q2], (T , ∆[y 7→ γ2][x 7→ γ1]))

G `f ` ∗ `′ : ((S , Γ), N, (T , ∆)) → p

Rule of transitivity:

G `(f,f) ` ∗ `′ : ((S , Γ), N, (T , ∆)) → p BG
G `(f,f) `′ ∗ `′′ : ((T , ∆), N, (R, Σ)) → p dom T ∪ cod ∆ ⊆ dom N

G `(f,f) ` ∗ `′′ : ((S , Γ), N, (R, Σ)) → p
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Intermediate Summary

Presented basic derivation systems for unstructured bytecode

Low assignments under high branches admitted

compatibility with and extensibility by transformation rules
(implementation interpretes labels ` and `′ w.r.t. possibly
different programs/methods)

Soundness w.r.t. termination-insensitive non-interference

Co-termination  termination-sensitive non-interference

Can this be extended to objects and methods?
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Current work: Objects and methods

Instructions: getf C .f , putf C .f , new C , invStat C .M

Extension of states by heap component:

l ∈ L
v ∈ V ::= int i | loc a | null

h ∈ Heap ::= L ⇀fin Obj

Obj = Classnames × (F ⇀fin V)

States 3 s = (O, σ, h)

Operational rules, e.g.:
M(`) = (getf C .f ) h↓a = (C , F ) F↓f = v

`, (loc a :: O, σ, h) → ` + 1, (v :: O, σ, h)

M(`) = invStat C .m P@(C .m) = (params, code, `0)
(params, code, `0), `0, ([], τ, h) ⇓ h′, v Frame(O, params, τ,O′)

`, (O, σ, h) → ` + 1, (v :: O′, σ, h′)
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Heap abstractions & rule format

Abstract Objects: OBJ 3 obj = (C ,F ) where
C : Classnames and F : F ⇀fin C
Abstract Heap: H = C ⇀fin OBJ
Abstract states have shape (S , Γ,H)

Administrative maps also store types: N ∈ C ⇀fin Tp × L
Method invocation necessitates introduction of post-RSD’s

Rule format: G `b M, ` ∗M ′, `′ : q, β → p, β′

GetF

M(`) = getf C .f H↓γ = (D, F ) F↓f = δ
G `t M, (` + 1) ∗M ′, `′ : q, ((δ :: S , Γ, H), N, (T , ∆, K)) → p, β

G `f M, ` ∗M ′, `′ : q, ((γ :: S , Γ, H), N, (T , ∆, K)) → p, β
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Allocation rules

New

M(`) = new C β = ((S , Γ, H), N, (T , ∆, K)) γ /∈ domN
β′′ = ((γ :: S , Γ, H[γ 7→(C , [])]), N[γ 7→(C , qq)], (T , ∆, K))

G `t M, ` + 1 ∗M ′, `′ : q, β′′ → p, β′

G `f M, l ∗M ′, `′ : q, β → p, β′

NewNew

M(`) = new C M ′(`′) = new C
β = ((S , Γ, H), N, (T , ∆, K)) γ /∈ dom N

β′′ = ((γ :: S , Γ, H[γ 7→(C , [])]), N[γ 7→(C , qq)], (γ :: T , ∆, K [γ 7→(C , [])]))
G `t M, ` + 1 ∗M ′, `′ + 1 : q, β′′ → p, β′

G `f M, ` ∗M ′, `′ : q, β → p, β′

Observation

Since the operational semantics also stores newly created objects
at fresh locations, we know that colours γ1, γ2 with N↓γi = (Ci , qi )
may be interpreted as different addresses.
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Local reasoning: frame rule

Motivation: method invocation rule that allows us to reason only
about the locally relevant part of the heap

Separation into two rules: invocation (here: two-sided) . . .

M(`) = invStat C .m M ′(`′) = invStat C ′.m′

P@(C .m) = M1 P@(C ′.m′) = M ′
1

M1 = (pars0, code0, `0) M ′
1 = (pars1, code1, `1)

β = ((S1, Γ, H), N, (T1, ∆, K)) q′ v q
(S1, pars0, Γ1, S) : absFrame (T1, pars1, ∆1, T ) : absFrame

G `t M, ` + 1 ∗M ′, `′ + 1 : q′, ((γ :: S , Γ, H1), N1, (γ
′ :: T , ∆, K1)) → p, δ

β1 = (([], Γ1, H), N, ([], ∆1, K))
G `t M1, `0 ∗M ′

1, `1 : q, β1 → q′, (([γ], [ ], H1), N1, ([γ
′], [ ], K1))

G `f M, ` ∗M ′, `′ : q, β → p, δ

. . . plus

Frame

G `b M, ` ∗M ′, `′ : q, β → p, δ
β ⊕ (H, N, K) = β1 δ ⊕ (H, N, K) = δ1

G `b M, ` ∗M ′, `′ : q, β1 → p, δ1
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G `t M1, `0 ∗M ′

1, `1 : q, β1 → q′, (([γ], [ ], H1), N1, ([γ
′], [ ], K1))

G `f M, ` ∗M ′, `′ : q, β → p, δ

. . . plus

Frame

G `b M, ` ∗M ′, `′ : q, β → p, δ
β ⊕ (H, N, K) = β1 δ ⊕ (H, N, K) = δ1

G `b M, ` ∗M ′, `′ : q, β1 → p, δ1

Lennart Beringer Relational proof system for non-interference



Stack-based language
Objects and methods (current work)

Current approach

Well-definedness of RSD’s includes (some) type-correctness
conditions

Concrete heaps are required to injectively contain at least
addresses for all abstract locations (and type-correct objects
at these locations), but may contain additional objects

Interpretation of judgements includes frame condition, by
universally quantifying over all (separated) heap extensions

Status:

(Multi-level) one-sided and two-sided rules derived for

new, getfield, putfield,
invokeStatic, invokeVirtual

(Two-sided) frame rule

Final slide: current & future work
Lennart Beringer Relational proof system for non-interference



Stack-based language
Objects and methods (current work)

Current & future work

Current work: subtyping, i.e. refinement on RSD’s with heaps

Refinement of administrative stucture N: additional entries?
subclassing of existing entries?

Refinement of abstract heaps: additional abstract objects?
Sublassing of existing entries? Additional abstract fields of
existing objects?

Interaction of these choices with frame condition

Future work

Transformation rules involving objects

Co-termination and termination-sensitive non-interference for
objects (will require side-condition in method rules)

Encoding of other type systems for NI and/or transformation
frameworks (translation validation, Tarmo/Ando)

Lennart Beringer Relational proof system for non-interference
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