
Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Piece-wise Polynomial Size Analysis
for Functional Programs

O. Shkaravska M. van Eekelen A. Tamalet

Digital Security, ICIS
Radboud Universiteit Nijmegen

Seminar IOC, Tallinn, 14 Aug 2008

Sponsored by the Netherlands Organisation for Scientific Research
(NWO), project Amortized Heap Space Usage Analysis (AHA),
grantnr. 612.063.511.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Outline

1 Motivation
Size information for memory/time management
Our previous work: strict polynomial size dependencies

2 Our results: lower and upper bounds for non-monotone
dependencies

A language and its type system
Type-checking decidable in reals
Test-based inference

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Outline

1 Motivation
Size information for memory/time management
Our previous work: strict polynomial size dependencies

2 Our results: lower and upper bounds for non-monotone
dependencies

A language and its type system
Type-checking decidable in reals
Test-based inference

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Predict memory and time behavior

Prevent abrupt termination: for small devices (mobile
phones, Java cards, etc.), for time and memory exhaustive
computations (GRID, model-generation).
Optimize memory management (less fragmentation etc.).
Avoid “Denial of Service” attacks that exploit memory
exhaustion.
Use in heap/stack and time properties verification.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Outline

1 Motivation
Size information for memory/time management
Our previous work: strict polynomial size dependencies

2 Our results: lower and upper bounds for non-monotone
dependencies

A language and its type system
Type-checking decidable in reals
Test-based inference

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Strict non-monotone polynomial size dependencies

Our previous work: strict polynomial size dependencies:

size-annotated type system to check and infer f.o. types
like: append : Ln(α)× Lm(α) → Ln+m(α)

sqdiff : Ln(α)× Lm(α) → L(n−m)2(α)

checking is decidable in integers under a syntactic
restriction,
test-based inference is semi-decidable (given a degree of
polynomials, hypothetical size annotations for a f.o. type
are generated via testing and checked by a type-checker).

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Strict non-monotone polynomial size dependencies

Main disadvantage: cannot analyse non-strict size
dependencies:

insert′ : Int× Ln(Int) → Ln, n+1(Int)
delete′ : Int× Ln(Int) → Ln, n−· 1(Int)

Other work (all non-strict size dependencies):
checking/inference is decidable in integers, but for linear
polynomials (L. Pareto),
checking/inference is decidable for monotone s.d., in reals
(polynomial quasi-interpretations of J.-Y. Marion),
decidability depends on external packages (K. Hammond),
monotone, inference with some human interaction (G.
Puebla),
size dependencies as programs (B. Jay)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Strict non-monotone polynomial size dependencies

Main disadvantage: cannot analyse non-strict size
dependencies:

insert′ : Int× Ln(Int) → Ln, n+1(Int)
delete′ : Int× Ln(Int) → Ln, n−· 1(Int)

Other work (all non-strict size dependencies):
checking/inference is decidable in integers, but for linear
polynomials (L. Pareto),
checking/inference is decidable for monotone s.d., in reals
(polynomial quasi-interpretations of J.-Y. Marion),
decidability depends on external packages (K. Hammond),
monotone, inference with some human interaction (G.
Puebla),
size dependencies as programs (B. Jay)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Outline

1 Motivation
Size information for memory/time management
Our previous work: strict polynomial size dependencies

2 Our results: lower and upper bounds for non-monotone
dependencies

A language and its type system
Type-checking decidable in reals
Test-based inference

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

The language

Basic b ::= c | Nil | Cons(x, y) | f (x1, . . . , xn)
Expr e ::= letfun f (x1, . . . , xn) = e1 in e2

| b
| let x = b in e
| if x then e1 else e2
| match x with | Nil ⇒ e1

| Cons(hd, tl) ⇒ e2

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Zero-order types

Zero-order types are (still) matrix-like structures:
[1, 2] ∈ L2(Int)
[[1, 3], [1, 4], [1, 5]] ∈ L3(L2(Int))

... and unions of them

[1, 2] ∈ L1(Int) ∪ L2(Int)
= L1≤i≤2

i (Int)

[[1, 3], [1, 4], [1, 5]] ∈ L3(L1(Int)) ∪ L3(L2(Int))
formally = ∃1 ≤ i ≤ 2. L3(Li(Int))
notation = L3(L

1≤i≤2
i (Int))

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Zero-order types

Zero-order types are (still) matrix-like structures:
[1, 2] ∈ L2(Int)
[[1, 3], [1, 4], [1, 5]] ∈ L3(L2(Int))

... and unions of them

[1, 2] ∈ L1(Int) ∪ L2(Int)
= L1≤i≤2

i (Int)

[[1, 3], [1, 4], [1, 5]] ∈ L3(L1(Int)) ∪ L3(L2(Int))
formally = ∃1 ≤ i ≤ 2. L3(Li(Int))
notation = L3(L

1≤i≤2
i (Int))

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Zero-order types

An example of types with size/type variables:

Ln(α) (formal-parameter types for functions)

L0≤i≤n
n2+i (α) (output types for functions)

Types τ ::= Int |Bool | α | LP(n, i)
p(n, i)

(τ),

where P(n, i) is an arithmetic quantifier-free predicate,
p(n, i) is a piece-wise polynomial (with both, − and −·)

Semantics in an example:
x : L0≤j≤n

m−· j (L0≤i≤n2

mn+i (α)) ∃ 0 ≤ j ≤ n, 0 ≤ i ≤ n2

x : Lm−· j(Lmn+i(α))

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Zero-order types

An example of types with size/type variables:

Ln(α) (formal-parameter types for functions)

L0≤i≤n
n2+i (α) (output types for functions)

Types τ ::= Int |Bool | α | LP(n, i)
p(n, i)

(τ),

where P(n, i) is an arithmetic quantifier-free predicate,
p(n, i) is a piece-wise polynomial (with both, − and −·)

Semantics in an example:
x : L0≤j≤n

m−· j (L0≤i≤n2

mn+i (α)) ∃ 0 ≤ j ≤ n, 0 ≤ i ≤ n2

x : Lm−· j(Lmn+i(α))

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Function types

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α)

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

filter : (α× α → Bool)× Ln(α) → L0≤i≤n
i (α)

delete : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n−· i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

divtwo : Ln(α) → L0≤i≤1
n−· i

2
(α)

formal-parameter types: zero-order with
just-size-variable-annotations, and higher-order.
Output types: zero-order annotations that do not depend
on the annotations (if any) of the higher-order arguments.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Function types

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α)

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

filter : (α× α → Bool)× Ln(α) → L0≤i≤n
i (α)

delete : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n−· i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

divtwo : Ln(α) → L0≤i≤1
n−· i

2
(α)

formal-parameter types: zero-order with
just-size-variable-annotations, and higher-order.
Output types: zero-order annotations that do not depend
on the annotations (if any) of the higher-order arguments.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Function types

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α)

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

filter : (α× α → Bool)× Ln(α) → L0≤i≤n
i (α)

delete : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n−· i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

divtwo : Ln(α) → L0≤i≤1
n−· i

2
(α)

formal-parameter types: zero-order with
just-size-variable-annotations, and higher-order.
Output types: zero-order annotations that do not depend
on the annotations (if any) of the higher-order arguments.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Function types

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α)

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

filter : (α× α → Bool)× Ln(α) → L0≤i≤n
i (α)

delete : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n−· i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

divtwo : Ln(α) → L0≤i≤1
n−· i

2
(α)

formal-parameter types: zero-order with
just-size-variable-annotations, and higher-order.
Output types: zero-order annotations that do not depend
on the annotations (if any) of the higher-order arguments.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Function types

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α)

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

filter : (α× α → Bool)× Ln(α) → L0≤i≤n
i (α)

delete : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n−· i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

divtwo : Ln(α) → L0≤i≤1
n−· i

2
(α)

formal-parameter types: zero-order with
just-size-variable-annotations, and higher-order.
Output types: zero-order annotations that do not depend
on the annotations (if any) of the higher-order arguments.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Typing rules

D ` p(n) = p′(n) + 1
D; Γ, hd : τ, tl : Lp′(n)(τ) `Σ Cons(hd, tl) : Lp(n)(τ)

CONS − old

D(n, j) ` LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′)

D(n, j); Γ, hd : τ ′, tl : LQ′(n, j
′
)

p′(n, j
′
)
(τ ′) `Σ

Cons(hd, tl) : LQ(n, i)
p(n, i)

(τ)

CONS

D(n, j) ` ∀ n j j
′ ∃i . D(n, j) ∧Q′(n, j

′
) ⇒

LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′) Q(n, i) ∧ p(n, i) = p′(n, j
′
) + 1

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Typing rules

D ` p(n) = p′(n) + 1
D; Γ, hd : τ, tl : Lp′(n)(τ) `Σ Cons(hd, tl) : Lp(n)(τ)

CONS − old

D(n, j) ` LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′)

D(n, j); Γ, hd : τ ′, tl : LQ′(n, j
′
)

p′(n, j
′
)
(τ ′) `Σ

Cons(hd, tl) : LQ(n, i)
p(n, i)

(τ)

CONS

D(n, j) ` ∀ n j j
′ ∃i . D(n, j) ∧Q′(n, j

′
) ⇒

LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′) Q(n, i) ∧ p(n, i) = p′(n, j
′
) + 1

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Typing rules

D ` p(n) = p′(n) + 1
D; Γ, hd : τ, tl : Lp′(n)(τ) `Σ Cons(hd, tl) : Lp(n)(τ)

CONS − old

D(n, j) ` LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′)

D(n, j); Γ, hd : τ ′, tl : LQ′(n, j
′
)

p′(n, j
′
)
(τ ′) `Σ

Cons(hd, tl) : LQ(n, i)
p(n, i)

(τ)

CONS

D(n, j) ` ∀ n j j
′ ∃i . D(n, j) ∧Q′(n, j

′
) ⇒

LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′) Q(n, i) ∧ p(n, i) = p′(n, j
′
) + 1

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Typing rules

Σ(f) = τ f
1 × . . .× τ f

k ′ × τ◦1 × . . .× τ◦k → τ0
Σ(g1) = τ f

1, . . . ,Σ(gk ′) = τ f
k ′

D ` τ ′0 / ∗(τ0)

D; Γ, x1 : τ1
′, . . . , x1 : τk

′ `Σ f (g1, . . . , gk ′ , x1, . . . , xk) : τ0
′ FAPP

Substitution ∗ on free size parameters
input Lm(−) 7→ LP(n, i)

p(n, i)
(−)

output LQ(..., m, ..., j)
q(..., m, ..., j)

() 7→ LP(n, i)∧Q(..., p(n, i),... j)
q(..., p(n, i), ..., j)

(−)

“Collections-of-polynomials” annotations handle non-monotone
bounds.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Typing rules

Σ(f) = τ f
1 × . . .× τ f

k ′ × τ◦1 × . . .× τ◦k → τ0
Σ(g1) = τ f

1, . . . ,Σ(gk ′) = τ f
k ′

D ` τ ′0 / ∗(τ0)

D; Γ, x1 : τ1
′, . . . , x1 : τk

′ `Σ f (g1, . . . , gk ′ , x1, . . . , xk) : τ0
′ FAPP

Substitution ∗ on free size parameters
input Lm(−) 7→ LP(n, i)

p(n, i)
(−)

output LQ(..., m, ..., j)
q(..., m, ..., j)

() 7→ LP(n, i)∧Q(..., p(n, i),... j)
q(..., p(n, i), ..., j)

(−)

“Collections-of-polynomials” annotations handle non-monotone
bounds.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Typing rules

The IF-rule: the same types in both branches, but its
existentials may be instantiated with different values of i :

Γ(x) = Bool
D; Γ `Σ et : τ
D; Γ `Σ ef : τ

D; Γ `Σ if x then et else ef : τ
IF

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Outline

1 Motivation
Size information for memory/time management
Our previous work: strict polynomial size dependencies

2 Our results: lower and upper bounds for non-monotone
dependencies

A language and its type system
Type-checking decidable in reals
Test-based inference

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Type checking: example

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α):

insert(g, x, y) =
match y with | Nil ⇒ let z = Nil in Cons(x, z)

| Cons(hd, tl) ⇒ if g(x, hd)
then y
else Cons(hd, insert(g, x, tl))

n = 0 ` n+?i = 0 ∧ 0 ≤?i ≤ 1
n > 0 ` n+?i = n ∧ 0 ≤?i ≤ 1
n > 0; 0 ≤ j ≤ 1 ` n+?i = (n − 1) + j + 1 ∧ 0 ≤?i ≤ 1

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Type checking: example

n = 0 ` n+?i = 0 ∧ 0 ≤?i ≤ 1
n > 0 ` n+?i = n ∧ 0 ≤?i ≤ 1
n > 0; 0 ≤ j ≤ 1 ` n+?i = (n − 1) + j + 1 ∧ 0 ≤?i ≤ 1

Solution:

` ?i := 0 ∧ 0 ≤?i ≤ 1
n > 0 ` ?i := n − n = 0 ∧ 0 ≤?i ≤ 1
n > 0; 0 ≤ j ≤ 1 ` ?i := j ∧ 0 ≤?i ≤ 1

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Output size annotations

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

Size annot. of the form p(n) + i or p(n)−· i
Q(n, i) of the form 0 ≤ i ≤ δ(n)

This
1 makes type checking easier, since end entailments are of

the form
D(n, j) ` p(n) + i = q(n, j) ∧Q(n, i)
i.e. to check D(n, j) ` Q(n, q(n, j)− p(n)),
or D(n, j) ` p(n)−· i = q(n, j) ∧Q(n, i)
i.e. to check ... see the next slide ...

2 comes from one natural observation (see the next slides).

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Output size annotations

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

Size annot. of the form p(n) + i or p(n)−· i
Q(n, i) of the form 0 ≤ i ≤ δ(n)

This
1 makes type checking easier, since end entailments are of

the form
D(n, j) ` p(n) + i = q(n, j) ∧Q(n, i)
i.e. to check D(n, j) ` Q(n, q(n, j)− p(n)),
or D(n, j) ` p(n)−· i = q(n, j) ∧Q(n, i)
i.e. to check ... see the next slide ...

2 comes from one natural observation (see the next slides).

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Output size annotations

Size annot. of the form p(n) + i or p(n)−· i
Q(n, i) of the form 0 ≤ i ≤ δ(n)

This
1 makes type checking easier, since end entailments are of

the form
(see above),
or D(n, j) ` p(n)−· i = q(n, j) ∧Q(n, i)
i.e. to check one of the
D(n, j), p(n)− q(n, j) ≤ p(n) ` Q(n, p(n)− q(n, j))
D(n, j), i > p(n) ` q(n, j) = 0 ∧Q(n, i)

,

2 comes from one natural observation (see the next slide)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Output size annotations

Size annot. of the form p(n) + i or p(n)−· i
Q(n, i) of the form 0 ≤ i ≤ δ(n)

This
1 makes type checking easier, since end entailments are of

the form
(see above),
or D(n, j) ` p(n)−· i = q(n, j) ∧Q(n, i)
i.e. to check one of the
D(n, j), p(n)− q(n, j) ≤ p(n) ` Q(n, p(n)− q(n, j))
D(n, j), i > p(n) ` q(n, j) = 0 ∧Q(n, i)

,

2 comes from one natural observation (see the next slide)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Output size annotations

Size annot. of the form p(n) + i or p(n)−· i
Q(n, i) of the form 0 ≤ i ≤ δ(n)

This

1 makes type checking easier,
2 comes from the fact, that one would like to check/infer a

lower pmin(n) and an upper pmax(n) bounds.
This means that the length of the output value is exactly
either pmin(n) + i for some 0 ≤ i ≤ pmax(n)− pmin(n)
or pmax(n)−· i for some 0 ≤ i ≤ pmax(n)− pmin(n)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Checking using reals (CAD)

Real arithmetic is inevitable.
Just embedding integers into reals is not enough!
E.g. x2 ≤ x3 is “true” for integers and “false” for reals.

Use CAD (Cylindrical Algebraic Decompositions):

to solve D(n, j) ` Q(n, j)
i.e. to find an integer counterexample (n, j) D(n, j) ∧ ¬Q(n, j)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Checking using reals (CAD)

Real arithmetic is inevitable.
Just embedding integers into reals is not enough!
E.g. x2 ≤ x3 is “true” for integers and “false” for reals.

Use CAD (Cylindrical Algebraic Decompositions):

to solve D(n, j) ` Q(n, j)
i.e. to find an integer counterexample (n, j) D(n, j) ∧ ¬Q(n, j)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Checking using reals (CAD)

CAD for a real predicate P(x)

g11 ≤ x1 ≤ g12
g21(x1) ≤ x2 ≤ g22(x1)
. . .

where gij contains +, −, ∗ and radicals.

The question: are there integer numbers in the CAD for
D(n, j) ∧ ¬Q(n, j)?
In the example: x2 > x3 holds on 0 < x < 1,
which does not contain integers.

An easy question if g12 is not ∞ (enumeration of integers from
bounded cylinders is used in Mathematica). Problem: g12 = ∞.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Checking using reals (CAD)

CAD for a real predicate P(x)

g11 ≤ x1 ≤ g12
g21(x1) ≤ x2 ≤ g22(x1)
. . .

where gij contains +, −, ∗ and radicals.

The question: are there integer numbers in the CAD for
D(n, j) ∧ ¬Q(n, j)?
In the example: x2 > x3 holds on 0 < x < 1,
which does not contain integers.

An easy question if g12 is not ∞ (enumeration of integers from
bounded cylinders is used in Mathematica). Problem: g12 = ∞.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Checking using reals (CAD)

CAD for a real predicate P(x)

g11 ≤ x1 ≤ g12
g21(x1) ≤ x2 ≤ g22(x1)
. . .

where gij contains +, −, ∗ and radicals.

The question: are there integer numbers in the CAD for
D(n, j) ∧ ¬Q(n, j)?
In the example: x2 > x3 holds on 0 < x < 1,
which does not contain integers.

An easy question if g12 is not ∞ (enumeration of integers from
bounded cylinders is used in Mathematica). Problem: g12 = ∞.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Outline

1 Motivation
Size information for memory/time management
Our previous work: strict polynomial size dependencies

2 Our results: lower and upper bounds for non-monotone
dependencies

A language and its type system
Type-checking decidable in reals
Test-based inference

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Inference via abstract “testing”

Assumption for a function f :
for any n (except in the base of recursion) there exists
an input xmin s.t. |f (x)| = pmin(n)
an input xmax s.t. |f (x)| = pmax(n)

An example: insert with a hypothesis pmin(n) = an + b
pmax(n) = a′n + b′

Abstract interpretation for insert: p(0) → 1
p(n) → n |1 + p(n − 1)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Inference via abstract “testing”

Assumption for a function f :
for any n (except in the base of recursion) there exists
an input xmin s.t. |f (x)| = pmin(n)
an input xmax s.t. |f (x)| = pmax(n)

An example: insert with a hypothesis pmin(n) = an + b
pmax(n) = a′n + b′

Abstract interpretation for insert: p(0) → 1
p(n) → n |1 + p(n − 1)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Inference via abstract “testing”

Assumption for a function f :
for any n (except in the base of recursion) there exists
an input xmin s.t. |f (x)| = pmin(n)
an input xmax s.t. |f (x)| = pmax(n)

An example: insert with a hypothesis pmin(n) = an + b
pmax(n) = a′n + b′

Abstract interpretation for insert: p(0) → 1
p(n) → n |1 + p(n − 1)

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Inference via abstract “testing”

Abstract interpretation for insert: p(0) → 1
p(n) → n |1 + p(n − 1)

p(1) = {1, 2}
p(2) = {2, 3}

}
⇒

{
pmin(1) = 1, pmin(2) = 2
pmax(1) = 2, pmax(2) = 3

Solving the system of linear equation gives

pmin(n) = n
pmax(n) = n + 1

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

A language and its type system
Type-checking decidable in reals
Test-based inference

Inference via abstract “testing”

Abstract interpretation for insert: p(0) → 1
p(n) → n |1 + p(n − 1)

p(1) = {1, 2}
p(2) = {2, 3}

}
⇒

{
pmin(1) = 1, pmin(2) = 2
pmax(1) = 2, pmax(2) = 3

Solving the system of linear equation gives

pmin(n) = n
pmax(n) = n + 1

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Summary

a polynomial-size-annotated type system is designed,
checking is decidable in reals and is, basically, adjusted for
integers,
test-based inference of polynomial lower and upper
bounds is possible.

Future work:

test-based inference for piece-wise polynomial bounds,
zero-order types: unnanotated lists, sized integers and
beyond matrices Ln(L

∃ i .Q(n, i)
p(n, i) (−)),

algebraic data structures,
the infinite cylinders issue.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Summary

a polynomial-size-annotated type system is designed,
checking is decidable in reals and is, basically, adjusted for
integers,
test-based inference of polynomial lower and upper
bounds is possible.

Future work:

test-based inference for piece-wise polynomial bounds,
zero-order types: unnanotated lists, sized integers and
beyond matrices Ln(L

∃ i .Q(n, i)
p(n, i) (−)),

algebraic data structures,
the infinite cylinders issue.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Summary

a polynomial-size-annotated type system is designed,
checking is decidable in reals and is, basically, adjusted for
integers,
test-based inference of polynomial lower and upper
bounds is possible.

Future work:

test-based inference for piece-wise polynomial bounds,
zero-order types: unnanotated lists, sized integers and
beyond matrices Ln(L

∃ i .Q(n, i)
p(n, i) (−)),

algebraic data structures,
the infinite cylinders issue.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Summary

a polynomial-size-annotated type system is designed,
checking is decidable in reals and is, basically, adjusted for
integers,
test-based inference of polynomial lower and upper
bounds is possible.

Future work:

test-based inference for piece-wise polynomial bounds,
zero-order types: unnanotated lists, sized integers and
beyond matrices Ln(L

∃ i .Q(n, i)
p(n, i) (−)),

algebraic data structures,
the infinite cylinders issue.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis

	Motivation
	Size information for memory/time management
	Our previous work: strict polynomial size dependencies

	Our results: lower and upper bounds for non-monotone dependencies
	A language and its type system
	Type-checking decidable in reals
	Test-based inference

	Summary

