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Predict memory and time behavior

Prevent abrupt termination: for small devices (mobile
phones, Java cards, etc.), for time and memory exhaustive
computations (GRID, model-generation).
Optimize memory management (less fragmentation etc.).
Avoid “Denial of Service” attacks that exploit memory
exhaustion.
Use in heap/stack and time properties verification.

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis



Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Outline

1 Motivation
Size information for memory/time management
Our previous work: strict polynomial size dependencies

2 Our results: lower and upper bounds for non-monotone
dependencies

A language and its type system
Type-checking decidable in reals
Test-based inference

Shkaravska, Tamalet, van Eekelen Polynomial Size Analysis



Motivation
Our results: lower and upper bounds for non-monotone dependencies

Summary

Size information for memory/time management
Our previous work: strict polynomial size dependencies

Strict non-monotone polynomial size dependencies

Our previous work: strict polynomial size dependencies:

size-annotated type system to check and infer f.o. types
like: append : Ln(α)× Lm(α) → Ln+m(α)

sqdiff : Ln(α)× Lm(α) → L(n−m)2(α)

checking is decidable in integers under a syntactic
restriction,
test-based inference is semi-decidable (given a degree of
polynomials, hypothetical size annotations for a f.o. type
are generated via testing and checked by a type-checker).
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Strict non-monotone polynomial size dependencies

Main disadvantage: cannot analyse non-strict size
dependencies:

insert′ : Int× Ln(Int) → Ln, n+1(Int)
delete′ : Int× Ln(Int) → Ln, n−· 1(Int)

Other work (all non-strict size dependencies):
checking/inference is decidable in integers, but for linear
polynomials (L. Pareto),
checking/inference is decidable for monotone s.d., in reals
(polynomial quasi-interpretations of J.-Y. Marion),
decidability depends on external packages (K. Hammond),
monotone, inference with some human interaction (G.
Puebla),
size dependencies as programs (B. Jay)
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The language

Basic b ::= c | Nil | Cons(x, y) | f (x1, . . . , xn)
Expr e ::= letfun f (x1, . . . , xn) = e1 in e2

| b
| let x = b in e
| if x then e1 else e2
| match x with | Nil ⇒ e1

| Cons(hd, tl) ⇒ e2
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Zero-order types

Zero-order types are (still) matrix-like structures:
[1, 2] ∈ L2(Int)
[ [1, 3], [1, 4], [1, 5]] ∈ L3(L2(Int))

... and unions of them

[1, 2] ∈ L1(Int) ∪ L2(Int)
= L1≤i≤2

i (Int)

[ [1, 3], [1, 4], [1, 5]] ∈ L3(L1(Int)) ∪ L3(L2(Int))
formally = ∃1 ≤ i ≤ 2. L3(Li(Int))
notation = L3(L

1≤i≤2
i (Int))
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Zero-order types

An example of types with size/type variables:

Ln(α) (formal-parameter types for functions)

L0≤i≤n
n2+i (α) (output types for functions)

Types τ ::= Int |Bool | α | LP(n, i)
p(n, i)

(τ),

where P(n, i) is an arithmetic quantifier-free predicate,
p(n, i) is a piece-wise polynomial (with both, − and −· )

Semantics in an example:
x : L0≤j≤n

m−· j (L0≤i≤n2

mn+i (α)) ∃ 0 ≤ j ≤ n, 0 ≤ i ≤ n2

x : Lm−· j(Lmn+i(α))
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Function types

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α)

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

filter : (α× α → Bool)× Ln(α) → L0≤i≤n
i (α)

delete : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n−· i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

divtwo : Ln(α) → L0≤i≤1
n−· i

2
(α)

formal-parameter types: zero-order with
just-size-variable-annotations, and higher-order.
Output types: zero-order annotations that do not depend
on the annotations (if any) of the higher-order arguments.
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Typing rules

D ` p(n) = p′(n) + 1
D; Γ, hd : τ, tl : Lp′(n)(τ) `Σ Cons(hd, tl) : Lp(n)(τ)

CONS − old

D(n, j) ` LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′)

D(n, j); Γ, hd : τ ′, tl : LQ′(n, j
′
)

p′(n, j
′
)
(τ ′) `Σ

Cons(hd, tl) : LQ(n, i)
p(n, i)

(τ)

CONS

D(n, j) ` ∀ n j j
′ ∃i . D(n, j) ∧Q′(n, j

′
) ⇒

LQ(n, i)
p(n, i)

(τ) / LQ′(n, j
′
)

p′(n, j
′
)+1

(τ ′) Q(n, i) ∧ p(n, i) = p′(n, j
′
) + 1
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Typing rules

Σ(f ) = τ f
1 × . . .× τ f

k ′ × τ◦1 × . . .× τ◦k → τ0
Σ(g1) = τ f

1, . . . ,Σ(gk ′) = τ f
k ′

D ` τ ′0 / ∗(τ0)

D; Γ, x1 : τ1
′, . . . , x1 : τk

′ `Σ f (g1, . . . , gk ′ , x1, . . . , xk ) : τ0
′ FAPP

Substitution ∗ on free size parameters
input Lm(−) 7→ LP(n, i)

p(n, i)
(−)

output LQ(..., m, ..., j)
q(..., m, ..., j)

( ) 7→ LP(n, i)∧Q(..., p(n, i),... j)
q(..., p(n, i), ..., j)

(−)

“Collections-of-polynomials” annotations handle non-monotone
bounds.
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Typing rules

The IF-rule: the same types in both branches, but its
existentials may be instantiated with different values of i :

Γ(x) = Bool
D; Γ `Σ et : τ
D; Γ `Σ ef : τ

D; Γ `Σ if x then et else ef : τ
IF
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Type checking: example

insert : (α× α → Bool)× α× Ln(α) → L0≤i≤1
n+i (α):

insert(g, x, y) =
match y with | Nil ⇒ let z = Nil in Cons(x, z)

| Cons(hd, tl) ⇒ if g(x, hd)
then y
else Cons(hd, insert(g, x, tl))

n = 0 ` n+?i = 0 ∧ 0 ≤?i ≤ 1
n > 0 ` n+?i = n ∧ 0 ≤?i ≤ 1
n > 0; 0 ≤ j ≤ 1 ` n+?i = (n − 1) + j + 1 ∧ 0 ≤?i ≤ 1
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Type checking: example

n = 0 ` n+?i = 0 ∧ 0 ≤?i ≤ 1
n > 0 ` n+?i = n ∧ 0 ≤?i ≤ 1
n > 0; 0 ≤ j ≤ 1 ` n+?i = (n − 1) + j + 1 ∧ 0 ≤?i ≤ 1

Solution:

` ?i := 0 ∧ 0 ≤?i ≤ 1
n > 0 ` ?i := n − n = 0 ∧ 0 ≤?i ≤ 1
n > 0; 0 ≤ j ≤ 1 ` ?i := j ∧ 0 ≤?i ≤ 1
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Output size annotations

rinsert : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m+i (α)

rdelete : (α× α → Bool)× Ln(α)× Lm(α) → L0≤i≤n
m−· i (α)

Size annot. of the form p(n) + i or p(n)−· i
Q(n, i) of the form 0 ≤ i ≤ δ(n)

This
1 makes type checking easier, since end entailments are of

the form
D(n, j) ` p(n) + i = q(n, j) ∧Q(n, i)
i.e. to check D(n, j) ` Q(n, q(n, j)− p(n)),
or D(n, j) ` p(n)−· i = q(n, j) ∧Q(n, i)
i.e. to check ... see the next slide ...

2 comes from one natural observation (see the next slides).
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Size annot. of the form p(n) + i or p(n)−· i
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This
1 makes type checking easier, since end entailments are of

the form
(see above),
or D(n, j) ` p(n)−· i = q(n, j) ∧Q(n, i)
i.e. to check one of the
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Output size annotations

Size annot. of the form p(n) + i or p(n)−· i
Q(n, i) of the form 0 ≤ i ≤ δ(n)

This

1 makes type checking easier,
2 comes from the fact, that one would like to check/infer a

lower pmin(n) and an upper pmax(n) bounds.
This means that the length of the output value is exactly
either pmin(n) + i for some 0 ≤ i ≤ pmax(n)− pmin(n)
or pmax(n)−· i for some 0 ≤ i ≤ pmax(n)− pmin(n)
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Checking using reals (CAD)

Real arithmetic is inevitable.
Just embedding integers into reals is not enough!
E.g. x2 ≤ x3 is “true” for integers and “false” for reals.

Use CAD (Cylindrical Algebraic Decompositions):

to solve D(n, j) ` Q(n, j)
i.e. to find an integer counterexample (n, j) D(n, j) ∧ ¬Q(n, j)
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Checking using reals (CAD)

CAD for a real predicate P(x)

g11 ≤ x1 ≤ g12
g21(x1) ≤ x2 ≤ g22(x1)
. . .

where gij contains +, −, ∗ and radicals.

The question: are there integer numbers in the CAD for
D(n, j) ∧ ¬Q(n, j)?
In the example: x2 > x3 holds on 0 < x < 1,
which does not contain integers.

An easy question if g12 is not ∞ (enumeration of integers from
bounded cylinders is used in Mathematica). Problem: g12 = ∞.
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Inference via abstract “testing”

Assumption for a function f :
for any n (except in the base of recursion) there exists
an input xmin s.t. |f (x)| = pmin(n)
an input xmax s.t. |f (x)| = pmax(n)

An example: insert with a hypothesis pmin(n) = an + b
pmax(n) = a′n + b′

Abstract interpretation for insert: p(0) → 1
p(n) → n |1 + p(n − 1)
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Inference via abstract “testing”

Abstract interpretation for insert: p(0) → 1
p(n) → n |1 + p(n − 1)

p(1) = {1, 2}
p(2) = {2, 3}

}
⇒

{
pmin(1) = 1, pmin(2) = 2
pmax(1) = 2, pmax(2) = 3

Solving the system of linear equation gives

pmin(n) = n
pmax(n) = n + 1
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Summary

a polynomial-size-annotated type system is designed,
checking is decidable in reals and is, basically, adjusted for
integers,
test-based inference of polynomial lower and upper
bounds is possible.

Future work:

test-based inference for piece-wise polynomial bounds,
zero-order types: unnanotated lists, sized integers and
beyond matrices Ln(L

∃ i .Q(n, i)
p(n, i) (−)),

algebraic data structures,
the infinite cylinders issue.
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