On Automatic Differentiation of Computer Codes

Presented to The Institute of Cybernetics, Tallinn, 3 September 2007

Emmanuel M. Tadjouddine

Computing Sciences Department

Aberdeen University

Aberdeen, AB24 3UE

e.tadjouddine@abdn.ac.uk

www.csd.abdn.ac.uk/~etadjoud

Outline

- Automatic Differentiation
 - Formalisation
 - The Forward Mode
 - The Reverse Mode
- Application: Optimisation of a Satellite Boom Structure
- Computational Issues
 - Program Analyses
 - Graph Elimination
 - Numerical Results
- Some Open Problems

Evaluating Derivatives [2]

Problem Statement

Given a program P computing a numerical value function \mathbf{F}

 $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$ $\mathbf{x} \mapsto \mathbf{y}$

build up a program that computes **F** and its *derivatives*.

What derivatives?

Precisely, we want derivatives of the *dependents*, e.g., some variables in the outputs y w.r.t. the *independents*, e.g., some variables in the inputs x. This may be

- The Jacobian matrix $J = \nabla \mathbf{F} = \frac{\partial \mathbf{y_i}}{\partial \mathbf{x_i}}$.
- A directional derivative $\dot{\mathbf{y}} = J * \dot{\mathbf{x}}$.
- Gradients when m = 1 as well as higher order derivatives

Finite Differencing (FD)

Given a directional derivative $\dot{\mathbf{x}}$, run *P* twice to compute

$$\dot{\mathbf{y}} = \frac{P(\mathbf{x} + h\dot{\mathbf{x}}) - P(\mathbf{x})}{h}$$

where h is a small non negative number.

- (+) Easy to implement
- (-) Aproximation: What step size h?
- (-) May be expensive but not always!

Accurate derivatives are needed in Optimisation for example.

Automatic Differentiation (AD)

A semantics augmentation framework

$$P(\mathbf{x} \mapsto \mathbf{y}) \Longrightarrow \mathbf{\dot{P}}(\mathbf{x}, \mathbf{\dot{x}} \mapsto \mathbf{y}, \mathbf{\dot{y}})$$

using the chain rules of calculus to elementary operations in an automated fashion.

A simple example

```
proc foo(a,b,s) proc food(a,da,b,db,s,ds)
REAL a,b,s
REAL a,b,s
REAL da,db,ds
ds = a*db+da*b
s = a*b s = a*b
end proc foo end proc food
```

The AD Framework

Some AD Tools: ADIFOR, Tapenade, TAF, etc.

Differentiating Programs? (1)

AD relies on the assumption that

the input program is piecewise differentiable.

To implement AD,

- Freeze the control of the input program
- View the program as a sequence of simple instructions
- Differentiate the sequence of instructions
- Caution: Some programs may not be piecewise differentiable while representing a differentiable function!

Differentiating Programs? (2)

A program *P* is viewed as a sequence of instructions

 $P: I_1, I_2, \ldots, I_{p-1}, I_p$

where each I_i represents a function ϕ_i

$$I_i: v_i = \phi_i(\{v_j\}_{j \prec i}), \quad i = 1, \dots, p.$$

computes the value of v_i in terms of previously defined v_j .

P is a composition of functions $\phi = \phi_p \circ \phi_{p-1} \circ \ldots \circ \phi_2 \circ \phi_1$ Differentiating ϕ yields

$$\phi'(\mathbf{x}) = \phi'_{\mathbf{p}}(\mathbf{v}_{\mathbf{p}-1}) \times \phi'_{\mathbf{p}-1}(\mathbf{v}_{\mathbf{p}-2}) \times \ldots \times \phi'_{\mathbf{1}}(\mathbf{x})$$

 \implies a chain of matrix multiplications

Forward and Reverse Modes

Forward mode

$$\dot{\mathbf{y}} = \phi'(\mathbf{x}) \times \dot{\mathbf{x}} = \phi'_{\mathbf{p}}(\mathbf{v}_{\mathbf{p}-1}) \times \phi'_{\mathbf{p}-1}(\mathbf{v}_{\mathbf{p}-2}) \times \ldots \times \phi'_{\mathbf{1}}(\mathbf{x}) \times \dot{\mathbf{x}}$$

The cost of computing $\nabla \mathbf{F}$ is about 3n times the cost of computing \mathbf{F}

Reverse mode

$$\bar{\mathbf{x}} = \phi'(\mathbf{x})^{\mathbf{T}} \times \bar{\mathbf{y}} = \phi'_{\mathbf{1}}(\mathbf{x})^{\mathbf{T}} \times \phi'_{\mathbf{2}}(\mathbf{v}_{\mathbf{1}})^{\mathbf{T}} \times \ldots \times \phi'_{\mathbf{p}}(\mathbf{v}_{\mathbf{p}-\mathbf{1}})^{\mathbf{T}} \times \bar{\mathbf{y}}$$

The cost of computing ∇F is about 3m times the cost of computing F but the memory requirement may explode.

Gradients are cheaper by reverse mode AD.

The Reverse Mode AD

$$\bar{\mathbf{x}} = \phi_1'(\mathbf{x})^{\mathbf{T}} \times \phi_2'(\mathbf{v_1})^{\mathbf{T}} \times \ldots \times \phi_p'(\mathbf{v_{p-1}})^{\mathbf{T}} \times \bar{\mathbf{y}}$$

 \uparrow

 $\bar{\mathbf{v}} - \bar{\mathbf{v}}$

$$\begin{array}{c|cccc} I_{1}: & v_{1} = \phi_{1}(\mathbf{x}) \\ I_{2}: & v_{2} = \phi_{2}(v_{1}, \mathbf{x}) \\ & & \\ &$$

- Instructions are differentiated in reverse order
- Either Recompute or Store the required values. The memory/execution time usage is a bottleneck!

Structural Design [3]

NASA Photo ID: STS61B-120-052

- Lightweight cantilever structure for suspending scientific instruments away from satellite.
- Wish to minimise transmission of vibration through structure from satellite to instrument

Optimisation of the Structure

Automatic Differentiation - p.12/30

Memetic Algorithm [4]

- Not a huge problem, the number of independents n=453
- Use of GA with population of 100 gives slow convergence
- Run times of 83 CPU days for 10 generations [3].
- Wish to speed convergence using Meta-Lamarckian approach [4]
 - Lamarckian evolution Inheritance of acquired characteristics
 - Couple gradient descent with the GA
 - But gradient of transmitted power expensive to approximate with FD
- Need the reverse mode AD

Improved Performance

AD coupled with hand-coded optimisations gave the following results:

Method	$CPU(\nabla F)(s)$	$CPU(\nabla \mathbf{F})/CPU(\mathbf{F})$
ADIFOR(reverse)	192.0	8.2
FD (1-sided)	10912.7	464.4

- Gradient obtained now for cost equivalent to 8.2 function evaluations
- 56 times faster than FD and without truncation error
- Memory requirement of just 0.3 GB

Improving the AD process

Avoiding useless memory storage and computations

- Data flow analyses (e.g., dependencies between program variables)
- Undecidability \implies conservative decisions
- Abstract Interpretation using conservative approximations of semantics of computer programs over lattices.
- Exploiting the processor architecture
 - Code reordering techniques
 - Heuristics on code tuning à la ATLAS project (J. Dongara et al).

Program analyses

- Activity analysis: determine the set of active variables, e.g., those that depend on an independent and that impact a dependent.
- Common subexpression elimination: reduce the number of floating-point operations (FLOPs).
- Tape size: Minimise the set of variables to be stored or recomputed for the reverse mode.
- Sparse computations:
 - Dynamic exploitation via a sparse matrix library (as in the ADIFOR tool).
 - Static exploitation via array region analysis to detect sparse derivative objects, select an appropriate data structure and generate codes accordingly [5].
 - Graph elimination techniques to pre-accumulate local derivatives at basic block level [1, 6].

AD by Vertex Elimination (1)

Consider the code (left) and its computational graph (right):

wherein $c_{i,j} = \partial \phi_i / \partial x_j$. The derivative $\frac{\partial v_6}{\partial (v_1, v_2)}$ is obtained by eliminating vertices 3, 4, 5.

AD by Vertex Elimination (2)

The Vertex Elimination (VE) approach consists in

- Building up explicitly the computational graph from the input code
- Finding a vertex elimination sequence using heuristics (forward, reverse, or cross-country orderings)
- Then, generating the derivative code

This approach enables us to

- Re-use expertise from sparse linear algebra
- Exploit the sparsity of the computation at compilation time
- Pre-accumulate local Jacobians at basic block level in a hierarchical manner.

Hierarchical AD

To pre-accumulate a basic block, perform an in-out analysis

- The inputs and outputs of basic blocks are determined using a read and write analysis.
- The inputs are those active variables that are written before, and read within, the basic block.
- The outputs are those active variables that are written in the basic block and read thereafter.

The overall differentiation is carried out by hierarchically preaccumulating each basic block.

Numerical Results (1)

The Osher scheme is an approximate Riemann solver. It is used to evaluate the inviscid flux normal to a surface interface. The Jacobian is a 5×10 matrix.

technique	cpu(abla F)/cpu(F)	error(abla F)
Hand-Coded	2.646	0.0E+00
FD	10.824	1.6E-03
ADIFOR(fwd)	6.373	5.7E-14
Adifor(rev)	23.235	7.4E-14
Tapenade(fwd)	4.784	6.8E-14
VE method (best)	3.788	5.7E-14

Numerical Results (2)

The Roe scheme is an approximate Riemann solver. It computes numerical fluxes of mass, energy and momentum across a cell face in a finite-volume compressible flow calculation. The Jacobian is a 5×20 matrix.

technique	cpu(abla F)/cpu(F)	error(abla F)
ADIFOR(fwd)	18.5	0.0
ADIFOR(rev)	9.1	$\mathcal{O}(10^{-16})$
FD	24.1	$\mathcal{O}(10^{-6})$
VE method (best)	4.7	$\mathcal{O}(10^{-15})$

Numerical Results (3)

LU methods are versions of vertex elimination methods

Floating-point performance (1)

- Extensive tests showed performance of AD codes dependent on platforms (processors + Compilers) [1]
- Hard to attain the so-called peak performance for a given processor (the best result was 1.6 FLOPs per clock cycle for the Compaq EV6 for which the theoretical maximum is 2).
- Assembler Inspection to work out the FLOPs count as well as the memory accesses
- Hardware performance monitors, e.g., the SGI SpeedShop, SUN Workshop
- Observation: Cache utilisation is a key issue when the memory traffic dominates the computation.

Floating-point performance (2)

- CPU-Memory performance gap (annual growth of about 55% for CPU versus 7% for memory)
- Importance of developping new algorithms adapted to current cache-based machines

I would rather have today's algorithms on yersterday's computers than vice versa. [P. Toint]

Some Open Problems

AD being a multidisciplinary young research topic, here are some open questions with a computer science flavour.

- Technical issues
 - Pointers and memory allocation
 - Communications and random control (undeterministic choices by processes)
- Fundamental issues
 - Reverse mode AD for large-scale codes
 - Nondifferentiability of functions such as max, abs,...
 - The Piecewise Differentiability (PD) hypothesis

Piecewise Differentiability

• Consider the function y = x coded as

```
if (x == 0.0) then
   y=0.0
else
   y=x
endif
```

for which AD yields dy/dx = 0 at x = 0!

In the code of the satellite boom example, such branches were constraints on geometry.

```
IF (XDIFF == 0.0 & YDIFF == 0.0) THEN
YOR(1,I) = ZDIFF/BEAM_LENG(I)
YOR(2,I) = 0.0
YOR(3,I) = 0.0
ENDIF
```

Trust is an Issue

- The PD hypothesis may not be true for some codes although it is satisfied for most cases.
- Side-effect instructions need be rewritten into a canonical form suitable for AD, e.g.,

$$a[i++] = b \longrightarrow a[i] = b$$

$$i = i+1$$

Does the canonicalized code before AD semantically equivalent to the input one?

- Users may be reluctant to changes of their input codes and may need guaranties about those changes (legacy codes).
- In this scenario, the proof-carrying code paradigm is relevant.

Towards Certified AD

Thank You!

Questions?

References

- [1] FORTH, S. A., TADJOUDDINE, M., PRYCE, J. D., AND REID, J. K. Jacobian code generated by source transformation and vertex elimination can be as efficient as hand-coding. ACM *Transactions on Mathematical Software 30*, 3 (Sept. 2004), 266–299.
- [2] GRIEWANK, A. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia, Penn., 2000.
- [3] KEANE, A., AND BROWN, S. The design of a satellite boom with enhanced vibration performance using genetic algorithm techniques. In *Proceedings of the Conference on Adaptive Computing in Engineering Design and Control 96* (Plymouth, 1996), I. C. Parmee, Ed., pp. 107–113.
- [4] ONG, Y., AND KEANE, A. Meta-lamarckian learning in memetic algorithms. *IEEE Transactions on Evolutionary Computing 8*, 2 (2004).
- [5] TADJOUDDINE, M., EYSSETTE, F., AND FAURE, C. Sparse Jacobian computation in automatic differentiation by static program analysis. In *Proceedings of the Fifth International Static Analysis Symposium, Pisa, Italy* (1998), no. 1503 in LNCS, Springer, pp. 311–326.
- [6] TADJOUDDINE, M., FORTH, S. A., AND PRYCE, J. D. Hierarchical automatic differentiation by vertex elimination and source transformation. In *ICCSA (2)* (2003), V. K. et al, Ed., vol. 2668 of *LNCS*, Springer, pp. 115–124.