
m
agentaw

w
w

.csd
.a

b
d

n
.a

c.u
k/

˜
e

ta
d

jo
u

d

On Automatic Differentiation of
Computer Codes

Presented to The Institute of Cybernetics, Tallinn, 3 September 2007

Emmanuel M. Tadjouddine

Computing Sciences Department

Aberdeen University

Aberdeen, AB24 3UE
e.tadjouddine@abdn.ac.uk

www.csd.abdn.ac.uk/ ˜ etadjoud

Automatic Differentiation – p.1/30

www.csd.abdn.ac.uk/~etadjoud
www.csd.abdn.ac.uk/~etadjoud

Outline

Automatic Differentiation

Formalisation
T he Forward Mode
T he Reverse Mode

Application: Optimisation of a Satellite Boom Structure

Computational Issues
Program Analyses
Graph Elimination
Numerical Results

Some Open Problems

Automatic Differentiation – p.2/30

Evaluating Derivatives [2]
Problem Statement

Given a program P computing a numerical value function F

F : R
n → R

m

x 7→ y

build up a program that computes F and its derivatives.

What derivatives?

Precisely, we want derivatives of the dependents, e.g., some
variables in the outputs y w.r.t. the independents, e.g., some
variables in the inputs x. This may be

The Jacobian matrix J = ∇F = ∂yi

∂xj
.

A directional derivative ẏ = J ∗ ẋ.
Gradients when m = 1 as well as higher order derivatives

Automatic Differentiation – p.3/30

Finite Differencing (FD)

Given a directional derivative ẋ, run P twice to compute

ẏ =
P (x + hẋ) − P (x)

h

where h is a small non negative number.

(+) Easy to implement

(-) Aproximation: What step size h?

(-) May be expensive but not always!

Accurate derivatives are needed in Optimisation for example.

Automatic Differentiation – p.4/30

Automatic Differentiation (AD)

A semantics augmentation framework

P (x 7→ y) =⇒ Ṗ(x, ẋ 7→ y, ẏ)

using the chain rules of calculus to elementary operations in
an automated fashion.

A simple example

proc foo(a,b,s) proc food(a,da,b,db,s,ds)
REAL a,b,s REAL a,b,s

REAL da,db,ds
=⇒ ds = a*db+da*b

s = a*b s = a*b
end proc foo end proc food

Automatic Differentiation – p.5/30

The AD Framework

Inter. Repr.
 (e.g., AST)

Augmented AST

Source Code

Derivative Code

Unparsing

 Graphs/Analyses

Transformation

+

Parsing

Some AD Tools: ADIFOR, Tapenade, TAF, etc.

Automatic Differentiation – p.6/30

Differentiating Programs? (1)

AD relies on the assumption that

the input program is piecewise differentiable.

To implement AD,

Freeze the control of the input program

View the program as a sequence of simple instructions

Differentiate the sequence of instructions

Caution: Some programs may not be piecewise
differentiable while representing a differentiable function!

Automatic Differentiation – p.7/30

Differentiating Programs? (2)

A program P is viewed as a sequence of instructions

P : I1, I2, . . . , Ip−1, Ip

where each Ii represents a function φi

Ii : vi = φi

(

{vj}j≺i

)

, i = 1, . . . , p.

computes the value of vi in terms of previously defined vj .

P is a composition of functions φ = φp ◦ φp−1 ◦ . . . ◦ φ2 ◦ φ1

Differentiating φ yields

φ′(x) = φ′

p(vp−1) × φ′

p−1(vp−2) × . . . × φ′

1

(

x)

=⇒ a chain of matrix multiplications
Automatic Differentiation – p.8/30

Forward and Reverse Modes

Forward mode

ẏ = φ′(x) × ẋ = φ′

p(vp−1) × φ′

p−1(vp−2) × . . . × φ′

1

(

x) × ẋ

The cost of computing ∇F is about 3n times the cost of
computing F

Reverse mode

x̄ = φ′(x)T × ȳ = φ′

1(x)T × φ′

2(v1)T × . . . × φ′

p(vp−1)T × ȳ

The cost of computing ∇F is about 3m times the cost of
computing F but the memory requirement may explode.

Gradients are cheaper by reverse mode AD.

Automatic Differentiation – p.9/30

The Reverse Mode AD

x̄ = φ′

1(x)T × φ′

2(v1)T × . . . × φ′

p(vp−1)T × ȳ

















y

I1 : v1 = φ1(x)

I2 : v2 = φ2(v1,x)

. . .

Ip vp = φp(v1, .., vp−1,x)

x



























x̄ = ȳ

Restore vp−1 before Ip−1

Īp x̄ = φ′

p(vp−1)
T ∗ x̄

. . .

Restorexbefore I1

Ī1 x̄ = φ′

1(x)T ∗ x̄

Instructions are differentiated in reverse order

Either Recompute or Store the required values. The
memory/execution time usage is a bottleneck!

Automatic Differentiation – p.10/30

Structural Design [3]

Lightweight cantilever
structure for
suspending scientific
instruments away from
satellite.

Wish to minimise trans-
mission of vibration
through structure from
satellite to instrument

NASA Photo ID: STS61B-120-052
Automatic Differentiation – p.11/30

Optimisation of the Structure

6

?

Meta-Lamarckian Approach

1) Periodic forcing at this end

2) Measure transmitted power at this end

�
�

�
�

�
�

�
��*

3) Use GA to minimise the power

Automatic Differentiation – p.12/30

Memetic Algorithm [4]

Not a huge problem, the number of independents n=453

Use of GA with population of 100 gives slow convergence

Run times of 83 CPU days for 10 generations [3].

Wish to speed convergence using Meta-Lamarckian
approach [4]

Lamarckian evolution - Inheritance of acquired
characteristics
Couple gradient descent with the GA
But gradient of transmitted power expensive to
approximate with FD

Need the reverse mode AD

Automatic Differentiation – p.13/30

Improved Performance

AD coupled with hand-coded optimisations gave the following
results:

Method CPU(∇F)(s) CPU(∇F)/CPU(F)

ADIFOR(reverse) 192.0 8.2
FD (1-sided) 10912.7 464.4

Gradient obtained now for cost equivalent to 8.2 function
evaluations

56 times faster than FD and without truncation error

Memory requirement of just 0.3 GB

Automatic Differentiation – p.14/30

Improving the AD process

Avoiding useless memory storage and computations

Data flow analyses (e.g., dependencies between program
variables)

Undecidability =⇒ conservative decisions

Abstract Interpretation using conservative approximations
of semantics of computer programs over lattices.

Exploiting the processor architecture

Code reordering techniques

Heuristics on code tuning à la ATLAS project (J. Dongara
et al).

Automatic Differentiation – p.15/30

Program analyses

Activity analysis: determine the set of active variables, e.g.,
those that depend on an independent and that impact a
dependent.

Common subexpression elimination: reduce the number of
floating-point operations (FLOPs).

Tape size: Minimise the set of variables to be stored or
recomputed for the reverse mode.

Sparse computations:
Dynamic exploitation via a sparse matrix library (as in the
ADIFOR tool).
Static exploitation via array region analysis to detect
sparse derivative objects, select an appropriate data
structure and generate codes accordingly [5].
Graph elimination techniques to pre-accumulate local
derivatives at basic block level [1, 6].

Automatic Differentiation – p.16/30

AD by Vertex Elimination (1)

Consider the code (left) and its computational graph (right):

v3 = φ3(v1, v2)

v4 = φ4(v2, v3)

v5 = φ5(v1, v3)

v6 = φ6(v4, v5)

21

6

3

45

c6,4
c6,5

c4,2c3,2c3,1
c5,1

c5,3 c4,3

wherein ci,j = ∂φi/∂xj .
The derivative ∂v6

∂(v1,v2) is obtained by eliminating vertices 3, 4, 5.

Automatic Differentiation – p.17/30

AD by Vertex Elimination (2)

The Vertex Elimination (VE) approach consists in

Building up explicitly the computational graph from the input
code

Finding a vertex elimination sequence using heuristics
(forward, reverse, or cross-country orderings)

Then, generating the derivative code

This approach enables us to

Re-use expertise from sparse linear algebra

Exploit the sparsity of the computation at compilation time

Pre-accumulate local Jacobians at basic block level in a
hierarchical manner.

Automatic Differentiation – p.18/30

Hierarchical AD

To pre-accumulate a basic block, perform an in-out analysis

The inputs and outputs of basic blocks are determined using
a read and write analysis.

The inputs are those active variables that are written before,
and read within, the basic block.

The outputs are those active variables that are written in the
basic block and read thereafter.

The overall differentiation is carried out by hierarchically pre-

accumulating each basic block.

Automatic Differentiation – p.19/30

Numerical Results (1)

The Osher scheme is an approximate Riemann solver. It is used
to evaluate the inviscid flux normal to a surface interface. The
Jacobian is a 5 × 10 matrix.

technique cpu(∇F)/cpu(F) error(∇F)
Hand-Coded 2.646 0.0E+00
FD 10.824 1.6E-03
ADIFOR(fwd) 6.373 5.7E-14
ADIFOR(rev) 23.235 7.4E-14
Tapenade(fwd) 4.784 6.8E-14
VE method (best) 3.788 5.7E-14

Automatic Differentiation – p.20/30

Numerical Results (2)

The Roe scheme is an approximate Riemann solver. It computes
numerical fluxes of mass, energy and momentum across a cell
face in a finite-volume compressible flow calculation. The
Jacobian is a 5 × 20 matrix.

technique cpu(∇F)/cpu(F) error(∇F)
ADIFOR(fwd) 18.5 0.0

ADIFOR(rev) 9.1 O(10−16)

FD 24.1 O(10−6)

VE method (best) 4.7 O(10−15)

Automatic Differentiation – p.21/30

Numerical Results (3)

LU methods are versions of vertex elimination methods

500 1000 1500 2000 2500

10
2

10
3

Performance of various methods on Randomly Generated Functions, Dell/g95 platform

Problem size measured as (#lines of code + #inputs) of function

C
P

U
(J

ac
ob

ia
n)

 /
C

P
U

(F
un

ct
io

n)

TAPENADE
FD
LU worst
LU best

Automatic Differentiation – p.22/30

Floating-point performance (1)

Extensive tests showed performance of AD codes
dependent on platforms (processors + Compilers) [1]

Hard to attain the so-called peak performance for a given
processor (the best result was 1.6 FLOPs per clock cycle for
the Compaq EV6 for which the theoretical maximum is 2).

Assembler Inspection to work out the FLOPs count as well
as the memory accesses

Hardware performance monitors, e.g., the SGI SpeedShop,
SUN Workshop

Observation: Cache utilisation is a key issue when the
memory traffic dominates the computation.

Automatic Differentiation – p.23/30

Floating-point performance (2)

CPU-Memory performance gap (annual growth of about
55% for CPU versus 7% for memory)

Importance of developping new algorithms adapted to
current cache-based machines

I would rather have today’s algorithms on
yersterday’s computers than vice versa. [P. Toint]

Automatic Differentiation – p.24/30

Some Open Problems

AD being a multidisciplinary young research topic, here are
some open questions with a computer science flavour.

Technical issues
Pointers and memory allocation
Communications and random control (undeterministic
choices by processes)

Fundamental issues
Reverse mode AD for large-scale codes
Nondifferentiability of functions such as max, abs , . . .

The Piecewise Differentiability (PD) hypothesis

Automatic Differentiation – p.25/30

Piecewise Differentiability

Consider the function y = x coded as
if (x == 0.0) then

y=0.0
else

y=x
endif

for which AD yields dy/dx = 0 at x = 0!
In the code of the satellite boom example, such branches
were constraints on geometry.

IF (XDIFF == 0.0 & YDIFF == 0.0) THEN
YOR(1,I) = ZDIFF/BEAM_LENG(I)
YOR(2,I) = 0.0
YOR(3,I) = 0.0

ENDIF

Automatic Differentiation – p.26/30

Trust is an Issue

The PD hypothesis may not be true for some codes although
it is satisfied for most cases.

Side-effect instructions need be rewritten into a canonical
form suitable for AD, e.g.,

a[i++] = b −→ a[i] = b
i = i+1

Does the canonicalized code before AD semantically
equivalent to the input one?

Users may be reluctant to changes of their input codes and
may need guaranties about those changes (legacy codes).

In this scenario, the proof-carrying code paradigm is
relevant.

Automatic Differentiation – p.27/30

Towards Certified AD

Program

Config. file

Program’

Proof Or

Counterexample

 OK

AD User
 AD Server

Safety Policy

(e.g., the PD

hypothesis)

Automatic Differentiation – p.28/30

Thank You!

Questions?

Automatic Differentiation – p.29/30

References
[1] FORTH, S. A., TADJOUDDINE, M., PRYCE, J. D., AND REID, J. K. Jacobian code generated by

source transformation and vertex elimination can be as efficient as hand-coding. ACM
Transactions on Mathematical Software 30, 3 (Sept. 2004), 266–299.

[2] GRIEWANK, A. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia, Penn., 2000.

[3] KEANE, A., AND BROWN, S. The design of a satellite boom with enhanced vibration
performance using genetic algorithm techniques. In Proceedings of the Conference on
Adaptive Computing in Engineering Design and Control 96 (Plymouth, 1996), I. C.
Parmee, Ed., pp. 107–113.

[4] ONG, Y., AND KEANE, A. Meta-lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computing 8, 2 (2004).

[5] TADJOUDDINE, M., EYSSETTE, F., AND FAURE, C. Sparse Jacobian computation in automatic
differentiation by static program analysis. In Proceedings of the Fifth International Static
Analysis Symposium, Pisa, Italy (1998), no. 1503 in LNCS, Springer, pp. 311–326.

[6] TADJOUDDINE, M., FORTH, S. A., AND PRYCE, J. D. Hierarchical automatic differentiation by
vertex elimination and source transformation. In ICCSA (2) (2003), V. K. et al, Ed.,
vol. 2668 of LNCS, Springer, pp. 115–124.

Automatic Differentiation – p.30/30

	Outline
	Evaluating Derivatives~cite {Griewank2000a}
	Finite Differencing (FD)
	Automatic Differentiation (AD)
	The AD Framework
	Differentiating Programs? (1)
	Differentiating Programs? (2)
	Forward and Reverse Modes
	The Reverse Mode AD
	Structural Design~cite {keane96:_desig_satel_boom_enhan_vibrat}
	Optimisation of the Structure
	Memetic Algorithm~cite {ong04:_meta_lamar_learn_memet_algor}
	Improved Performance
	Improving the AD process
	Program analyses
	AD by Vertex Elimination (1)
	AD by Vertex Elimination (2)
	Hierarchical AD
	Numerical Results (1)
	Numerical Results (2)
	Numerical Results (3)
	Floating-point performance (1)
	Floating-point performance (2)
	Some Open Problems
	Piecewise Differentiability
	Trust is an Issue
	Towards Certified AD
	Thank You!
	

