Normalization by Evaluation for System F J

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Computer Science Theory Seminar

Institute of Cybernetics, Tallinn, Estonia
6 April 2009

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 1/30



What is this for?

@ Theorem provers based on Curry-Howard: Coq, Agda, ...

@ Need to compare objects for equality.

@ E.g. f,g: N — N. Need a proof of P(f), have one of P(g).
@ Extensional equality is undecidable.

@ Approximation: intensional equality.

@ Compute normal forms for f, g and compare.

@ The more the better: 3-, 8-, fnw-, ... -normal form.

@ NB: Coq distinguishes between P(f) and P(\x. f x).

@ Normalization-by-evaluation excellent when 7 is involved.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 2/30



___________________________________
Simply-typed lambda-calculus

@ Terms and typing
M=x:r(x)

Nx:A-t:B r-r:A—B Mr-s:A
FrM-xt:A—B r-rs:B

@ [n-equality as judgement
MNx:A-t:B r-s:A
M= (M\xt)s=1t[s/x]: B

() r-t:A— B
Wi axix=t-A—

(8)

B x ¢ FV(t)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 3/30



What is Normalization By Evaluation?

Semantics (Values)

eval ().

Syntax (Terms) » Normal Forms

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 4/30



What is Normalization By Evaluation?

Semantics (Values)

eval ().

Syntax (Terms) » Normal Forms

@ You have: an interpreter (() ).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 4/30



What is Normalization By Evaluation?

Semantics (Values)

eval ().

Syntax (Terms) » Normal Forms

@ You have: an interpreter (() ).
@ You buy: my reifyer (_ "\, ).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 4/30



What is Normalization By Evaluation?

Semantics (Values)

eval ().

Syntax (Terms) » Normal Forms

@ You have: an interpreter (() ).
@ You buy: my reifyer (_ "\, ).
@ You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 4/30



How to Reify a Function

@ Functions are thought of as black boxes.
@ How to print the code of a function?
@ Apply it to a fresh variable!

reify (f) = AX. reif;i(f(x))

reify (xd) = xreify(d)

@ Computation needs to be extended to handle variables
(unknowns).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 5/30



Choices of Semantics

@ p-normal forms (Agda 2, Ulf Norell)

© Weak head normal forms (Constructive Engine, Randy Pollack)
© Explicit substitutions (Twelf, Pfenning et.al.)

© Closures (your favorite pure functional language, Epigram 2)
@ Virtual machine code (Cog: ZINC machine, Leroy/Gregoire)

© Native machine code (Cayenne: i386, Dirk Kleeblatt)

These are all (partial) applicative structures.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 6/30



Applicative Structures

An applicative structure consists of:

@ AsetD.
@ Application operation - _: D x D — D.
@ Interpretation (), < D for term t and environment 7, satisfying:

Xy = n(x)
(rshy = (rhy-(shy
(])‘XtDn d = (]tDr/[XHd]

Simple examples:
@ D = (Tm/=g3) terms modulo 3-equality.
@ D = [D — D] reflexive (Scott) domain.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 7 /30



An Interpreter in Haskell

Abs :: (D —> D) —-> D
app :: D —> (D —-> D)

data Tm where

TmVar :: Name —-> Tm
TmAbs :: Name —-> Tm -> Tm
TmApp :: Tm —-> Tm —> Tm
lookup :: Env —-> Name —-> D
ext :: Env —> Name -> D —-> Env
eval :: Tm —-> Env —> D
eval (TmVar x) eta = lookup eta x

eval (TmAbs x t)eta = Abs (\ d —> eval t (ext eta x d))
eval (TmApp r s)eta app (eval r eta) (eval s eta)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 8/30



Applicative Structures with Variables

@ Enrich D with all neutral objects x d; ... d,, where x a variable and
d‘],...,dne D

@ Application satisfies: = .
(xd)-d=xdd

@ Leroy/Gregoire call neutral objects accumulators.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 9/30



Value Domain with Variables

data D where
Abs :: (D -> D) -> D
Neu :: Ne —> D

type Name = String
data Ne where

Var :: Name —-> Ne
App :: Ne -> D —-> Ne
app :: D -—> D —-> D
app (Abs f) d = f d

app (Neu n) d = Neu (App n d)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09

10/30



Reification (Simply-Typed)

@ Given a type and a value of this type, produce a term.
@ Context I records types of free variables.

@ Inductively defined relation I = d ~\, v {} A.

@ “In context I', value d reifies to term v at type A”

Mx:AEd-x\v{B
r|Ed~N \xwftA—B

FEdad ™~ v Aforalli X):/Z\‘H*
Fl—xd\xvﬂ*

@ Inputs: ', d, A
@ Output: v (B-normal n-long).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 11/30



___________________________________
Reification (Step by Step)

@ Reifying neutral values step by step:

FrFeNulA e reifies to u, inferring type A.

@ Inputs: I, e (neutral value).
@ Outputs: u (neutral 3-normal 7-long), A.

@ Rules:
FrFeNUlA—=B TrHANV)A
FEx N x4 r(x) r'ed~Nuv{B
FEeN ul *
e, uf
°

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 12/30



Type-Directed Reification in Haskell

reify :: Cxt -> Ty -> D -> Tm
reify’ :: Cxt -> Ne -> (Tm, Ty)

reify gamma (Arr a b) f = TmAbs x
(reify gamma’ b (app f (Neu (Var x))))
where x

freshName gamma
gamma’ = push gamma x a
reify gamma (Base _) (Neu n) = fst (reify’ gamma n)

reify’ gamma (Var x) = (TmVar x, lookup gamma Xx)
reify’ gamma (App n d) (TmApp r s, b)
where (r, Arr a b) = reify’ gamma n
S = reify gamma a d

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 13/30



Normalization by Evaluation

@ Compose evaluation with reification:

nbex(t) = the v with + (#),, \\ VT A

@ Completeness: NbE returns identical normal forms for all
p#n-equal terms of the same type.

Ifr Ht=1t:Athenl = (t),, . v Aand
FE()py W VTA
@ Soundness: NbE does not identify too many terms. The returned
normal form is 5n-equal to the original term.
Ifr =t:AthenTl = (t),, v Aandl -t=v:A.

@ Both proven by Kripke logical relations.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 14/30



A Logical Relation for Soundness

@ A Kripke logical relation A € K” of type A is a map from contexts I
to relations between values and terms of type A:

(T € Cxt) — P(D x Tm{)

@ Monotonicity: extending I increases the relation.
@ For each type A, define KLRs A, A by

Ar = {(d,t)|TFd\,vtAandT I-t=v:Afor some v}
A = {(et)|T e viAandl t=v:Aforsome v}

@ Soundness: If [ +t: Athen ((t),,,t) € Ar.
@ Define KLR [A] C A and show ((t),,, t) € [Al; (fundamental
theorem).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 15/30



Candidate Space

@ Function space: given A ¢ K” and B € KB, define

(A=B)r = {(f,r)eDxTmfB|(f-d,rs) e By
if " extends " and (d, s) € Ar}

@ A, Aform an candidate space, i.e.:

*|

[

=
—

W @ *
N 1N 1N
>

.
=

>
|
o @

@ We say Al- A (Arealizes A, or A is a candidate for A) if
ACACA
Andreas Abel (LMU Munich)

Normalization by Evaluation for System F 10C '09 16/30



Justification of candidate space

@ Law x C *
FEeN ul *

e, uq

MxAkd-x\,v{B
r|Ed~\ \xw{tA—B

elawA—-BCA=B

r-reNnxulyA—_B Fr=dN\ VAN A
Fr-edN\uvlB

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 17/30



Justification of candidate space |l

@ Let A the weakly normalizing terms of type A.
@ Let Athe w.n. terms of shape x s1 ... s, of type A.
@ Law x C ¥

ACA

elawA=BCA—-B

rx c Bimpliesrc A— B

lawA—-BCA=B

rcA—Bandsc Aimplyrsc B

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 18/30



Type interpretation

@ Define [A] by induction on A.

[ = %
[A— B] [A] = [B]

@ Theorem: A I [[A].
@ Now, the fundamental theorem implies soundness of NbE.
@ Completeness by a similar logical relation.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 19/30



|
What Have We Got?

@ Abstractions in our proof:
@ Applicative structures abstract over values and 3.

@ Fundamental theorem in a general form.

© Candidate spaces abstract over “good” semantical types. (New!)
@ Other instances for A, A yield traditional weak 3(1)-normalization.

@ Readily adapts to System F.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 20/30



Scaling to System F

@ Extending the notion of candidate space:

AX/Y] C VYA for a new X
VYA C A[B/Y] forany B

@ Extending type interpretation:

(X1, = »(X)
[A-Bl, = [Al,— 8],

[[VXA]]/) = mB\FB [[A]]p[XHB]

@ Extending applicative structures, reification... (unproblematic).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 21/30



System F

Church-Style System F

@ Terms and Typing

I t=x:T(x)
Nx:A-t:B r-r:A—B N-s:A
- Xx:At:A— B Fr-rs:B
Fr=t: A X ¢ FV(T) F=t:vXA

[ - AXt: VXA [ FiB:AB/X]

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 22/30



System F

Judgemental Equality for System F

@ The typed equational theory of System F is induced by
MNx:A-t:B r-s:A
= (A\x:At)s=t[s/x]: B
r-t:A—=B
N - Xx:Atx=t:A—B
FrEt:A  XgFV(D)
I = (AXt)B=t[B/X]: AIB/X]
F=t: VXA
F=AX.tX=1t:VXA

x & FV(t)

X & FV(t)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 23/30



System F

Evaluation

@ We assume an evaluation function (—|),, € Tm — D, satisfying

qXDn - TI(X)
Qf SDn = (]an : QSDU
(rA)y = (rhy - An
(Ax:A.t n d = (]tDn[XHd]
(AXthy-A = (tyx—a
(tls/xMy = (npx—qs),]
qt[A/X]Dn = (]tD7][X>—>AT]]
(thy = (thy if n(x) =1n'(x) forall x € FV(t)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 24 /30



System F

Contextual reification

@ We can read back values as terms; this is called reification.

FrEdN It A d reifies to t at type A,
FrEdN\tJA d reifies to t, inferring type A.

@ Rules:
r-eNri|{A—B FrEdN s A
FEx N xJrx) r-ed~\.rslB

Nex rivxA NNeNori X
r-eB\.rBl AB/X] Frcexrf X

Fx:AkFf-x\ t)B FEF- XNt A
FTFINMCALINASB T FFNAXf VXA

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 25/30



System F

Candidate space

@ For each type A, define KLRs A, A by

A = {(d,)|TFd\,vftAandTl t=v:Aforsome v}
A- = {(et|T e\ vl AandTl Ft=v:Aforsome v}

@ A, Aform an candidate space fulfilling the conditions

i > >
N
Wl

NN 1N N

AX/Y]

A— B
A—B
A[B/Y]| forany B

VYA fora new X

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09

26/30



System F

Type interpretation

@ We interpret quantification by an intersection which is indexed
only by the realizable semantic types.

X1, = »p(X)
[A—B], = [Al,—[8],
[VXAl, = NaislAlx—5

@ Types realize their interpretation: If o(X) I- p(X) for all X, then
Ao I+ [[A]]p.

@ Proof: Induction on A, using the closure conditions of the
candidate space.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 27 /30



System F

Soundness of NbE for System F

@ Now, prove the fundamental theorem for System F.
@ Let o(X) IF n(X) for all X.

IfT = t:Aand(n(x),o(x)) € [[(x)], forall x then
((thy, to) € AL,

@ As before, this entails soundness.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09

28/30



System F

Related Work

@ Altenkirch, Hofmann, and Streicher (1997) describe another
version of NbE for System F.

@ Each type is interpreted by a syntactical type A, a semantical type
A, and a normalization function nf* for terms of type A.

@ Construction carried out in category theory.

@ Other work on NbE: Martin-L6f, Schwichtenberg, Berger, Danvy,
Filinski, Dybjer, Scott, Aehlig, Joachimski, Coquand, and many
more.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 29/30



System F

Conclusions

@ This work: NbE for System F with conventional means.
@ Follows the structure of a weak normalization proof.

@ Variation of Girard’s scheme.

@ Future work: scale to the Calculus of Constructions.

Acknowledgments: This work was carried out during a
visit to Frédeéric Blanqui and Cody Roux at LORIA, Nancy,
France, financed by the Bayerisch-Franzbsisches
Hochschulzentrum.

Thanks to James and Tarmo for the invitation.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F 10C '09 30/30



	System F

