Computers Without Batteries?
 Rewriting Cellular Automata into Block Automata

Silvio Capobianco
Institute of Cybernetics at TUT

June 5, 2009

Joint work with Tommaso Toffoli ${ }^{1}$ and Patrizia Mentrasti ${ }^{2}$

[^0]
Introduction

- Cellular automata (CA) are schematics for digital circuits
- Intrinsic of CA is the use of 1 -to- N signal replication
- Physically, this entails employing free energy
- Question:

It is possible to achieve the same global functional behavior without draining the power supply of free energy?

- Possible drawback: a more complex structure

Outline of the talk

- Physical issues in locally-defined models of computation
- Kari's theorem on reversible 1D CA
- Our result for 1D non-surjective CA
- Conclusions and suggestions for higher-dimensional CA

Bibliography

- Toffoli, T. and Margolus, N. (1990) Invertible cellular automata: a review. Physica D 45, 229-253.
- Kari, J. (1996) Representation of reversible cellular automata with block permutations. Math. Syst. Th. 29, 47-61.
- Kari, J. (1999) On the circuit depth of structurally reversible cellular automata. Fundam. Inform. 38, 93-107.
- Toffoli, T., Capobianco, S., and Mentrasti, P. (2008) When—and how-can a cellular automaton be rewritten as a lattice gas? Theor.Comp. Sci. 403, 71-88.
- Capobianco, S. (2008) Multidimensional cellular automata and generalization of Fekete's lemma. Disc. Math. Theor. Comp. Sci. 10(3), 95-104.

A recipe for CA

Ingredients:

- an integer dimension $d \geq 1$
- a finite set Q of states
- a neighborhood index $\mathcal{N}:\{1, \ldots, N\} \rightarrow \mathbb{Z}^{d}$
- a local map $f: Q^{N} \rightarrow Q$
"Bake" the global map

$$
c_{x}^{t+1}=f\left(c_{x+\mathcal{N}(1)}^{t}, \ldots, c_{x+\mathcal{N}(n)}^{t}\right)
$$

Enjoy!

The shift map
$\sigma(c)_{x}=c_{x+1} \forall c \in Q^{\mathbb{Z}}, x \in \mathbb{Z}$

CA (thermo)dynamics

Space-time diagram of a CA

Heat balance of CA

- Many-to-one discipline increases entropy-produces heat
- Fanout nodes perform signal replication-require power
- Heat must be dissipated via a heat sink
- Power must be supplied by an external source

Three classes of CA

Reversible (r.e.)	Properly Surjective	Non-Surjective
(r.e.)		

- \mathcal{C}^{+}-there exists a CA modeling the inverse dynamics
- \mathcal{C}^{0}-each configuration has a preimage, some have more
- \mathcal{C}^{-}-some finite blocks have no preimage

Hedlund's theorem

$$
\mathcal{C}^{+}=\left\{F \in C\left(Q^{\mathbb{Z}}, Q^{\mathbb{Z}}\right) \mid \exists F^{-1} \text { and } F \circ \sigma=\sigma \circ F\right\}
$$

Block automata

A "watertight compartments" computation

- Space is partitioned into equally-shaped blocks
- Each block updates at the same time
- Each block updates independently of the others

Block automata (BA) may be thought of as
zero-range, coarse-grained CA

Lattice gases: A two-steps discipline

Collision

- Strictly pointwise process
- Same number for inputs and outputs
- Same types for inputs and outputs

Propagation

- Each signal to one neighbour
- No replication
- No reuse

Lattice gases are combinations of shifts and BA with one-point blocks

Lattice gas (thermo)dynamics

Space-time diagram of a lattice gas

Heat balance of a lattice gas

- No fanout nodes, no signal destruction.
- The energy-requiring task is skipped.
- No need to dissipate heat if collision invertible.
- No need to provide power.

There. . .

Every BA can be re-written as a CA

- Same dimension
- Old blocks become new points
- Neighborhood reduced to the point itself

Also every LG can be re-written as a CA

... and back again?

From \mathcal{C}^{+}to \mathcal{L}
Kari, 1996

- OK in dimensions 1 and 2
- Equivalent to a conjecture on high-dimensional shift spaces for $d \geq 3$.

From \mathcal{C}^{0} to \mathcal{L} ? Impossible!
In a (possibly non-homogeneous) BA or LG, the global map is
[in|sur]jective iff each of the local maps is.
(Toffoli, Capobianco and Mentrasti, Lemma 3)

From \mathcal{C}^{-}to \mathcal{L} ?

Never really checked before as far as we know

Kari's construction for 1D reversible CA

Let \mathcal{A} be a reversible 1D CA and let F be its global rule. Let $[-r, \ldots, r]$ contain the neighborhoods of both \mathcal{A} and \mathcal{A}^{-1}. Put

$$
\begin{aligned}
R_{\mathcal{A}} & =\left\{\left(c_{0}, \ldots, c_{2 r-1}, F(c)_{-r}, \ldots, F(c)_{r-1}\right) \mid c \in Q^{\mathbb{Z}}\right\} \\
L_{\mathcal{A}} & =\left\{\left(F(c)_{0}, \ldots, F(c)_{2 r-1}, c_{-r}, \ldots, c_{r-1}\right) \mid c \in Q^{\mathbb{Z}}\right\}
\end{aligned}
$$

Observe that $L_{\mathcal{A}}=R_{\mathcal{A}^{-1}}$ and vice versa.

Lemma A

$\left|R_{\mathcal{A}}\right| \cdot\left|L_{\mathcal{A}}\right|=|Q|^{6 r}$
Reason why: the two $4 r$-tuples have a total of $2 r$ constraints, for a total of $6 r$ degrees of freedom.

A group-theoretic note

Put $h_{+}(\mathcal{A})=\frac{\left|R_{\mathcal{A}}\right|}{|Q|^{\mid 3 r}}$ and $h_{-}(\mathcal{A})=\frac{\left|L_{\mathcal{A}}\right|}{|Q|^{\mid 3 r}}$.
This is well-posed: increasing r by 1 adds to each tuple 4 elements with 1 constraint.
By Lemma $\mathrm{A}, h_{-}(\mathcal{A}) \cdot h_{+}(\mathcal{A})=1$.

Lemma B

$h_{ \pm} \in \operatorname{Hom}\left(\mathcal{C}^{+}, \mathbb{Q}_{+}\right)$. Also, $h_{+}(\mathcal{A})=\left(h_{-}(\mathcal{A})\right)^{-1}$.
Reason why: $h_{ \pm}\left(\mathcal{A}_{1} ; \mathcal{A}_{2}\right) \leq h_{ \pm}\left(\mathcal{A}_{1}\right) \cdot h_{ \pm}\left(\mathcal{A}_{2}\right)$ and observation above.
Lift $h_{ \pm}$to $\operatorname{Hom}\left(\Gamma, \mathbb{Q}_{+}\right)$where
$\Gamma=\left\{F \in C\left(Q^{\mathbb{Z}}, Q^{\mathbb{Z}}\right) \mid \exists F^{-1}\right.$ and $\left.\exists n \geq 1 \mid F \circ \sigma^{n}=\sigma^{n} \circ F\right\}$

- Every BA is in $\operatorname{ker}\left(h_{-}\right)$.
- $\operatorname{im}\left(h_{-}\right)$is generated by the prime factors of $|Q|$.

Two BA layers always suffice

Kari's main lemma

Every CA in $\operatorname{ker}\left(h_{-}\right)$is composition of two BA.
Reason why:

- $\mathcal{A} \in \operatorname{ker}\left(h_{-}\right)$means $\left|R_{\mathcal{A}}\right|=\left|L_{\mathcal{A}}\right|=|Q|^{3 r}$.
- Let $b_{X}: X_{\mathcal{A}} \rightarrow|Q|^{3 r}$ be a bijection.
- With F global rule of \mathcal{A}, put

$$
\begin{aligned}
f_{R, \mathcal{A}}\left(c_{0}, \ldots, c_{6 r-1}\right) & =\left(c_{4 r}, \ldots, c_{6 r-1}, F(c)_{3 r}, \ldots, F(c)_{5 r-1}\right) \\
f_{L, \mathcal{A}}\left(c_{0}, \ldots, c_{6 r-1}\right) & =\left(F(c)_{r}, \ldots, F(c)_{3 r-1}, c_{0}, \ldots, c_{2 r-1}\right)
\end{aligned}
$$

- Then the following are permutations of $|Q|^{6 r}$ objects:

$$
\begin{aligned}
& \pi_{1}=\left(b_{L} \circ f_{L, \mathcal{A}}\right) \otimes\left(b_{R} \circ f_{R, \mathcal{A}}\right) \\
& \pi_{2}=\left(b_{R} \circ f_{L, \mathcal{A}^{-1}}\right) \otimes\left(b_{L} \circ f_{R, \mathcal{A}^{-1}}\right)
\end{aligned}
$$

- But $F=p_{2}^{-1} \circ p_{1}$, with p_{i} block permutation induced by π_{i}.

Partial shifts

If $Q=Q_{1} \times Q_{2} \times \ldots \times Q_{k}$, consider $\sigma_{i}: Q^{\mathbb{Z}} \rightarrow Q^{\mathbb{Z}}$ given by

$$
\left(\sigma_{i}(c)_{x}\right)_{j}= \begin{cases}\left(c_{x+1}\right)_{i} & \text { iff } i=j \\ \left(c_{x}\right)_{j} & \text { iff } i \neq j\end{cases}
$$

- Every partial shift is a CA.
- Q can always be re-written as above, with each $\left|Q_{i}\right|$ a prime that divedes $|Q|$.
- $h_{-}\left(\sigma_{i}\right)=\left|Q_{i}\right|$.

Theorem

Every reversible 1D CA is composition of two BA and partial shifts.

The AND CA on two neighbours

101 is not reachable:

\cdots	1	0	1	.	\cdots
\cdots	1	1	1	1	\cdots
\cdots	.	1	.	.	\cdots

First attempt: Just partition into blocks

Problems

- Either we force a value on a line...
- ... or we allow superluminal speed

Second attempt: Add another layer

Problems

- This is a composition of BA...
- ... but its dynamics is wrong

Third attempt: Add a duplication channel

Problems

- This has the correct dynamics...
- ... but violates the input-output constraint!

What is left?

Exploiting information loss

Variety

$\nu_{\mathcal{A}}(n)=\mathrm{nr}$. of patterns on $\{0, \ldots, n-1\}$ obtainable by applying the CA rule.

$$
V(n)=\log _{|Q|} v(n)
$$

The CA is in \mathcal{C}^{-}iff $V(n)<n$ for some n.
In our case

n	$v(n)$	$V(n)$	$n-V(n)$		n	$v(n)$	$V(n)$
$n-V(n)$							
1	2	1	0		5	21	4.39
2	4	2	0		6	37	5.21
3	7	2.81	0.19		7	65	6.02
4	12	3.58	0.42		8	$\mathbf{1 1 4}$	$\mathbf{6 . 8 3}$
4		0.98					

Idea: use that free bit to encode the boundary

Fourth attempt: add a codec-we made it at last!

Rewriting AND as a LG-"text only" version

Input: a non-surjective CA
(1) Find R so that $R+N$ signals can be compressed into R
(2) Partition the space into blocks of $R+N$ cells each
(3) Compute as many points as possible
(9) Add another layer
(5) Replicate the signal entering the neighboring block
(0) Encode the output and replicated signal into R bits
(3) Send information from first layer to second
(8) Decode the compressed output-and-replication
(9) Compute the remaining points

But: Can we always perform step 1 ?

Yes, we can!

Fekete's lemma
If $f:\{1,2, \ldots\} \rightarrow[0,+\infty)$ satisfies $f(n+m) \leq f(n)+f(m) \forall n, m$, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n}=\inf _{n \geq 1} \frac{f(n)}{n}
$$

Every CA in \mathcal{C}^{-}can be re-written with 2 BA layers (TCM'08)

- Let $1>\delta>\inf _{n \geq 1} V(n) / n$
- A possible output sized $n+m$ is a junction of two sized n, m
$\Rightarrow V$ is subadditive
$\Rightarrow R+N-V(R+N) \geq(R+N)(1-\delta)>N$ for R large enough
- Use blocks of size $R+N$

Hints for reversible CA

Kari's theorem in dimension 2

Every reversible 2D CA is the composition of at most four BA layers.
The proof is based on the following

Lemma C

Let X and Y be shifts of finite type.
Suppose a power of $X \times Y$ is conjugate to a full shift.
Then a power of X and a power of Y are conjugate to full shifts.
Kari proves that an analogous conjecture in dimension d is equivalent to his theorem in dimension $d+1$.

Hints for non-surjective CA

Multivariate Fekete's lemma (Capobianco, 2008)
Let $\mathbb{Z}_{+}^{d}=\{1,2, \ldots\}^{d}$ be pre-ordered by $x \leq y$ iff $x_{i} \leq y_{i} \forall i$.
If $f:\{1,2, \ldots\}^{d} \rightarrow[0,+\infty)$ is subadditive in each variable, then

$$
\lim _{z \in \mathbb{Z}_{+}^{d}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}=\inf _{z \in \mathbb{Z}_{+}^{d}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}
$$

Neighborhood size is never an issue
Put $\Lambda\left(r_{1}, \ldots, r_{d}\right)=r_{1} \cdots r_{d}-V\left(r_{1}, \ldots, r_{d}\right)$. TFAE.
(1) The CA is non-surjective.
(2) For every $K, n_{1}, \ldots, n_{d} \geq 0$ there exist $t_{1}, \ldots, t_{d} \in \mathbb{Z}_{+}$such that, if $r_{j} \geq t_{j}$ for every j, then

$$
\Lambda\left(r_{1}, \ldots, r_{d}\right) \geq\left(r_{1}+n_{1}\right) \cdots\left(r_{d}+n_{d}\right)-r_{1} \cdots r_{d}+K .
$$

Computation without batteries!

State of the art

- OK for $d=1$
- One basic case for $d=2$
- Open-and promising-for $d>1$

Future work

- Find construction schemes for any d
- Use at most $d+1$ layers in dimension d (cf. Kari 1999)
- Prove or disprove Kari's conjecture about \mathcal{C}^{+}

Thank you for attention!

Any questions?

[^0]: ${ }^{1}$ Boston University.
 ${ }^{2}$ University of Rome "La Sapienza".

