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My thesis

• Type checking in Haskell 

• Epigram language - McBride/McKinna

• Big-step normalisation for simple types, 
formalised in Agda

• Big-step normalisation for dependent types, 
partially formalised in Agda



Goal of my current 
work

• To write a correct-by-construction type 
checker for type theory in type theory

• Epigram in Epigram/Agda in Agda



A  brief history of type 
theory



Brouwer’s intuitionism

• Start again with a new mathematics

• Rejects some classical laws:

• Excluded middle: A ∨ ¬A

• Proof by contradiction: A ⇔ ¬¬A



BHK Interpretation
• A proof of A → B is a function which 

converts proofs of A into proofs of B

• A proof of A ∧ B is a pair of a proof of 
A and a proof of B

• A proof of A ∨ B is either a proof of A 
or a proof of B

• A proof of ∃x . P x means a pair of a 
witness x and a proof that x satisfies P

Heyting - 
Intuitionistic logic



Intuitionistic Logic

Proof = Program

Proposition = Specification

Proposition ≠ Type



Is intuitionistic logic 
enough?

d : A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)
d (a , left  b) = left  (a , b)
d (a , right c) = right (a , c)

We can prove theorems by writing programs:

But we cannot reason about proofs:

e  :  ∀ p , q : A ∧ (B ∨ C) → 
            (d p == d q) → (p == q)
e = ?



A full-scale intuitionistic 
system

• Can quantify over proofs of a proposition (Sigma 
and Pi types)

• Satisfies BHK interpretation of logic

• Started by Howard 

• “The formulae-as-types notion of construction”

• Finished by Martin-Löf 

• “an intuitionistic theory of types”



A full-scale intuitionistic 
system (2)

Proof = Program

Proposition = Type

Cut elimination = Normalisation

Proof checking = Type checking



Present day
• Type theory is used (and still being refined) 

for theorem proving, certified software and 
dependently typed programming

• Coq - developed at INRIA France

• Essential for proving Four Color Theorem

• Common Criteria certification of JavaCard

• Agda - developed at Chalmers Sweden

• Prototype dependently typed programming 
language (used in this talk)



Why certify a type 
checker?

• Certified certification

• Introspective language design

• Intuitionistic metatheory



Certified certification
• It’s the central component of systems for 

developing certified software. A faulty checker 
might accept faulty certificates

• Coq is used for industrial strength certification

• HOL-Light’s 100 line type checker had a bug in 
it for 15 years. Uncovered by Flyspeck project

• No fixed idea about what can be implemented 
in type theory.  E.g. Verified tactics



Introspective language 
design

• Sound engineering approach:

• E.g. write a C compiler in C

• Often first big test for a language

• Synergy between language design and 
implementation

• E.g. GHC leading the development of 
Haskell



Intuitionistic 
metatheory

• A type checker includes and executable semantics for 
type theory

• Martin-Löf worked in an informal intuitionistic 
metalanguage

• Working formally gives:

• Computer assistance

• High assurance

• Another synergy here: E.g. induction recursion



Type checking and 
normalisation



Lists
data List (A : Set) : Set where
  nil  : List A
  cons : A → List A → List A

app : List A → List A → List A
app nil         ws = ws
app (cons v vs) ws = cons v (app vs ws)

Typing constraints from definition of app:
List A = List A
List A = List A



Vectors
data Vec (A : Set) : Nat → Set where
  nil  : Vec A zero
  cons : A → Vec A n → Vec A (suc n)

app : Vec A m → Vec A n → Vec A (m + n)
app nil         ws = ws 
app (cons v vs) ws = cons v (app vs ws)

Typing constraints from definition of app:
Vec A (zero  + n) = Vec A n
Vec A (suc m + n) = Vec A (suc (m + n))



Well typed syntax (1)

data Tm : Con → Ty → Set where
  var : Var Γ σ → Tm Γ σ
  app : Tm Γ (σ → τ) → Tm Γ σ
        Tm Γ τ
  λ   : Tm (Γ , σ) τ → Tm Γ (σ → τ)

We express the syntax and the type system in one

Types are base ι or σ → τ,  contexts are lists of types

Example: Simply typed lambda calculus



Well typed syntax (2)

data Var : Con → Ty → Set where
  top : Var (Γ , σ) σ
  pop : Var Γ σ → (τ : Ty) → 
        Var (Γ , τ) σ

Well scoped nameless variables (de Bruijn indices)

Never have to deal with dangling variables



Big-step normalisation

• Define a partial function nf : Tm → Nf 
such that it satisfies the following 
properties:

• termination: ∀t.∃n.nf t ⇓ n

• completeness: emb (nf t) ≅ t

• soundness: t ≅ u → nf t = nf u



BSN compared
• Traditional small-step normalisation

• Not how you’d implement it

• Doesn’t work well with βη-equality

• Normalisation-by-evaluation (NBE)

• Practical approach to βη-normalisation

• Everything at once, higher order

• Big-step normalisation (BSN)

• A variation on NBE

• Separates computation and termination, first order



Big-step normalisation 
for Abadi, Cardelli and 
Curien’s λσ-calculus

Joint work with Thorsten Altenkirch



λσ syntax
  -- conventional lambda and application
  λ    : Tm (Γ , σ) τ → Tm Γ (σ → τ)
  app  : Tm Γ (σ → τ) → Tm Γ σ → Tm Γ τ
  
  -- variables and expl. substitution
  top  : Tm (Γ , σ) σ
  _[_] : Tm Δ σ → Sub Γ Δ → Tm Γ σ

  -- explicit weakening
  ↑σ : Sub (Γ , σ) Γ

We have a well typed syntax of terms and substitions



Equational theory

  subid  : t [ id ] ≅ t
  β      : app (λ t) u ≅ t [ id , u ]
  proj   : top [ ts , t ] ≅ t

  compid : ts • id ≅ ts

We can write down the laws of the equational theory as an 
inductively defined relation on terms and substitutions



Implementing the 
normaliser

We do this in two stages:

ValuesTerms Normal forms
eval quote



Values

data Val : Con → Ty → Set where

  λv : Tm (Δ , σ) τ → Env Γ Δ →
       Val Γ (σ → τ)

  ne : Ne Γ τ → Val Γ τ

are either lambda closures or neutral (stuck) terms



Evalution (1)

eval  : Tm  Δ σ → Env Γ Δ → Val Γ σ
seval : Sub Δ Ε → Env Γ Δ → Env Γ Ε
_@@_  : Val Γ (σ → τ) → 
        Val Γ σ → Val Γ τ

We define the following operations mutually:

Afterwards we prove that they terminate



Evaluation (2)
eval : Tm Δ σ → Env Γ Δ → Val Γ σ
eval (λ t)      vs       = λv t vs
eval (app t u)  vs       = 
  (eval t vs) @@ (eval u vs)
eval top        (vs , v) = v
eval (t [ ts ]) vs       = 
  eval t (seval ts vs)

_@@_ : Val Γ (σ → τ) → Val Γ σ → Val Γ τ
λv t vs @@ v = eval t (vs , v)
ne n    @@ v = ne (app n a)



β-normal η-long forms

data Nf : Con → Ty → Set where
  
  λn : Nf (Δ , σ) τ → Nf Γ (σ → τ)
  
  ne : Ne Γ ι → Nf Γ ι

are either lambda-abstraction or neutral 
embedded at base type



Quote

quote : Val Γ σ → Nf Γ σ

-- quote the components
quoteι       (ne n) = ne (nquote n)

-- perform eta expansion
quote(σ → τ) f      = 
  λn (quoteτ (wk f @@ top)))

is defined by recursion on types.



The normaliser
Having defined eval and quote we can define:

nf : Tm Γ σ → Nf Γ σ
nf t = quoteσ (eval t idΓ)

which is:
 • terminating (proof using strong computability)
 • sound (proof using logical relations)
 • and complete (simple induction on big-step relation)



BSN Summary
• Write a partial normaliser function

• Prove termination over graph (big-step 
semantics) of partial function

• Combine function and termination proof using 
Bove-Capretta technique to get a total function

• Note: Termination proof doesn’t add 
computational content, computational behaviour 
remains the same as the partial function



Dependent types
• Can extend this approach to dependent 

types but equational theory is now 
mutually defined with the syntax:

• Also contexts, types, terms and 
substitutions must be mutually defined

t : Tm Γ σ
p : σ ≅ σ’

coe t p : Tm Γ’ σ’
conversion rule



Related work

• Simple types

• NBE for λσ-calculus - C. Coquand

• Dependent types

• Coq-in-Coq - Barras

• Internal Type Theory - Dybjer

• NBE for Martin-Löf’s logical framework - Danielsson



Conclusion

• Dependent typed languages are suited to 
implementing languages and much more

• I want to verify a type checker for higher 
assurance, and to explore both dependently 
typed programming and intuitionistic 
metatheory

• Big-step normalisation is a practical, scalable 
approach to normalisation


