
Type checking and
normalisation

James Chapman - University of Nottingham

My thesis

• Type checking in Haskell

• Epigram language - McBride/McKinna

• Big-step normalisation for simple types,
formalised in Agda

• Big-step normalisation for dependent types,
partially formalised in Agda

Goal of my current
work

• To write a correct-by-construction type
checker for type theory in type theory

• Epigram in Epigram/Agda in Agda

A brief history of type
theory

Brouwer’s intuitionism

• Start again with a new mathematics

• Rejects some classical laws:

• Excluded middle: A ∨ ¬A

• Proof by contradiction: A ⇔ ¬¬A

BHK Interpretation
• A proof of A → B is a function which

converts proofs of A into proofs of B

• A proof of A ∧ B is a pair of a proof of
A and a proof of B

• A proof of A ∨ B is either a proof of A
or a proof of B

• A proof of ∃x . P x means a pair of a
witness x and a proof that x satisfies P

Heyting -
Intuitionistic logic

Intuitionistic Logic

Proof = Program

Proposition = Specification

Proposition ≠ Type

Is intuitionistic logic
enough?

d : A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)
d (a , left b) = left (a , b)
d (a , right c) = right (a , c)

We can prove theorems by writing programs:

But we cannot reason about proofs:

e : ∀ p , q : A ∧ (B ∨ C) →
 (d p == d q) → (p == q)
e = ?

A full-scale intuitionistic
system

• Can quantify over proofs of a proposition (Sigma
and Pi types)

• Satisfies BHK interpretation of logic

• Started by Howard

• “The formulae-as-types notion of construction”

• Finished by Martin-Löf

• “an intuitionistic theory of types”

A full-scale intuitionistic
system (2)

Proof = Program

Proposition = Type

Cut elimination = Normalisation

Proof checking = Type checking

Present day
• Type theory is used (and still being refined)

for theorem proving, certified software and
dependently typed programming

• Coq - developed at INRIA France

• Essential for proving Four Color Theorem

• Common Criteria certification of JavaCard

• Agda - developed at Chalmers Sweden

• Prototype dependently typed programming
language (used in this talk)

Why certify a type
checker?

• Certified certification

• Introspective language design

• Intuitionistic metatheory

Certified certification
• It’s the central component of systems for

developing certified software. A faulty checker
might accept faulty certificates

• Coq is used for industrial strength certification

• HOL-Light’s 100 line type checker had a bug in
it for 15 years. Uncovered by Flyspeck project

• No fixed idea about what can be implemented
in type theory. E.g. Verified tactics

Introspective language
design

• Sound engineering approach:

• E.g. write a C compiler in C

• Often first big test for a language

• Synergy between language design and
implementation

• E.g. GHC leading the development of
Haskell

Intuitionistic
metatheory

• A type checker includes and executable semantics for
type theory

• Martin-Löf worked in an informal intuitionistic
metalanguage

• Working formally gives:

• Computer assistance

• High assurance

• Another synergy here: E.g. induction recursion

Type checking and
normalisation

Lists
data List (A : Set) : Set where
 nil : List A
 cons : A → List A → List A

app : List A → List A → List A
app nil ws = ws
app (cons v vs) ws = cons v (app vs ws)

Typing constraints from definition of app:
List A = List A
List A = List A

Vectors
data Vec (A : Set) : Nat → Set where
 nil : Vec A zero
 cons : A → Vec A n → Vec A (suc n)

app : Vec A m → Vec A n → Vec A (m + n)
app nil ws = ws
app (cons v vs) ws = cons v (app vs ws)

Typing constraints from definition of app:
Vec A (zero + n) = Vec A n
Vec A (suc m + n) = Vec A (suc (m + n))

Well typed syntax (1)

data Tm : Con → Ty → Set where
 var : Var Γ σ → Tm Γ σ
 app : Tm Γ (σ → τ) → Tm Γ σ
 Tm Γ τ
 λ : Tm (Γ , σ) τ → Tm Γ (σ → τ)

We express the syntax and the type system in one

Types are base ι or σ → τ, contexts are lists of types

Example: Simply typed lambda calculus

Well typed syntax (2)

data Var : Con → Ty → Set where
 top : Var (Γ , σ) σ
 pop : Var Γ σ → (τ : Ty) →
 Var (Γ , τ) σ

Well scoped nameless variables (de Bruijn indices)

Never have to deal with dangling variables

Big-step normalisation

• Define a partial function nf : Tm → Nf
such that it satisfies the following
properties:

• termination: ∀t.∃n.nf t ⇓ n

• completeness: emb (nf t) ≅ t

• soundness: t ≅ u → nf t = nf u

BSN compared
• Traditional small-step normalisation

• Not how you’d implement it

• Doesn’t work well with βη-equality

• Normalisation-by-evaluation (NBE)

• Practical approach to βη-normalisation

• Everything at once, higher order

• Big-step normalisation (BSN)

• A variation on NBE

• Separates computation and termination, first order

Big-step normalisation
for Abadi, Cardelli and
Curien’s λσ-calculus

Joint work with Thorsten Altenkirch

λσ syntax
 -- conventional lambda and application
 λ : Tm (Γ , σ) τ → Tm Γ (σ → τ)
 app : Tm Γ (σ → τ) → Tm Γ σ → Tm Γ τ

 -- variables and expl. substitution
 top : Tm (Γ , σ) σ
 [] : Tm Δ σ → Sub Γ Δ → Tm Γ σ

 -- explicit weakening
 ↑σ : Sub (Γ , σ) Γ

We have a well typed syntax of terms and substitions

Equational theory

 subid : t [id] ≅ t
 β : app (λ t) u ≅ t [id , u]
 proj : top [ts , t] ≅ t

 compid : ts • id ≅ ts

We can write down the laws of the equational theory as an
inductively defined relation on terms and substitutions

Implementing the
normaliser

We do this in two stages:

ValuesTerms Normal forms
eval quote

Values

data Val : Con → Ty → Set where

 λv : Tm (Δ , σ) τ → Env Γ Δ →
 Val Γ (σ → τ)

 ne : Ne Γ τ → Val Γ τ

are either lambda closures or neutral (stuck) terms

Evalution (1)

eval : Tm Δ σ → Env Γ Δ → Val Γ σ
seval : Sub Δ Ε → Env Γ Δ → Env Γ Ε
@@ : Val Γ (σ → τ) →
 Val Γ σ → Val Γ τ

We define the following operations mutually:

Afterwards we prove that they terminate

Evaluation (2)
eval : Tm Δ σ → Env Γ Δ → Val Γ σ
eval (λ t) vs = λv t vs
eval (app t u) vs =
 (eval t vs) @@ (eval u vs)
eval top (vs , v) = v
eval (t [ts]) vs =
 eval t (seval ts vs)

@@ : Val Γ (σ → τ) → Val Γ σ → Val Γ τ
λv t vs @@ v = eval t (vs , v)
ne n @@ v = ne (app n a)

β-normal η-long forms

data Nf : Con → Ty → Set where

 λn : Nf (Δ , σ) τ → Nf Γ (σ → τ)

 ne : Ne Γ ι → Nf Γ ι

are either lambda-abstraction or neutral
embedded at base type

Quote

quote : Val Γ σ → Nf Γ σ

-- quote the components
quoteι (ne n) = ne (nquote n)

-- perform eta expansion
quote(σ → τ) f =
 λn (quoteτ (wk f @@ top)))

is defined by recursion on types.

The normaliser
Having defined eval and quote we can define:

nf : Tm Γ σ → Nf Γ σ
nf t = quoteσ (eval t idΓ)

which is:
 • terminating (proof using strong computability)
 • sound (proof using logical relations)
 • and complete (simple induction on big-step relation)

BSN Summary
• Write a partial normaliser function

• Prove termination over graph (big-step
semantics) of partial function

• Combine function and termination proof using
Bove-Capretta technique to get a total function

• Note: Termination proof doesn’t add
computational content, computational behaviour
remains the same as the partial function

Dependent types
• Can extend this approach to dependent

types but equational theory is now
mutually defined with the syntax:

• Also contexts, types, terms and
substitutions must be mutually defined

t : Tm Γ σ
p : σ ≅ σ’

coe t p : Tm Γ’ σ’
conversion rule

Related work

• Simple types

• NBE for λσ-calculus - C. Coquand

• Dependent types

• Coq-in-Coq - Barras

• Internal Type Theory - Dybjer

• NBE for Martin-Löf’s logical framework - Danielsson

Conclusion

• Dependent typed languages are suited to
implementing languages and much more

• I want to verify a type checker for higher
assurance, and to explore both dependently
typed programming and intuitionistic
metatheory

• Big-step normalisation is a practical, scalable
approach to normalisation

