Type checking and normalisation

James Chapman - University of Nottingham

My thesis

- Type checking in Haskell
 - Epigram language McBride/McKinna

- Big-step normalisation for simple types, formalised in Agda
- Big-step normalisation for dependent types, partially formalised in Agda

Goal of my current work

- To write a correct-by-construction type checker for type theory in type theory
- Epigram in Epigram/Agda in Agda

A brief history of type theory

Brouwer's intuitionism

- Start again with a new mathematics
- Rejects some classical laws:
 - Excluded middle: A $\lor \neg$ A
 - Proof by contradiction: $A \Leftrightarrow \neg \neg A$

BHK Interpretation

- A proof of $A \rightarrow B$ is a function which converts proofs of A into proofs of B
- A proof of A A B is a pair of a proof of A and a proof of B
- A proof of A ∨ B is either a proof of A or a proof of B
- A proof of ∃x . P x means a pair of a witness x and a proof that x satisfies P

Heyting -Intuitionistic logic

Intuitionistic Logic

- Proof = Program
- Proposition = Specification
- Proposition \neq Type

Is intuitionistic logic enough?

We can prove theorems by writing programs: d : A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C) d (a , left b) = left (a , b) d (a , right c) = right (a , c)

But we cannot reason about proofs:

e:
$$\forall p$$
, q: $A \land (B \lor C) \rightarrow$
(d p == d q) \rightarrow (p == q)

e = ?

A full-scale intuitionistic system

- Can quantify over proofs of a proposition (Sigma and Pi types)
- Satisfies BHK interpretation of logic
- Started by Howard
 - "The formulae-as-types notion of construction"
- Finished by Martin-Löf
 - "an intuitionistic theory of types"

A full-scale intuitionistic system (2)

- Proof = Program
- Proposition = Type
- Cut elimination = Normalisation
- Proof checking = Type checking

Present day

- Type theory is used (and still being refined) for theorem proving, certified software and dependently typed programming
- Coq developed at INRIA France
 - Essential for proving Four Color Theorem
 - Common Criteria certification of JavaCard
- Agda developed at Chalmers Sweden
 - Prototype dependently typed programming language (used in this talk)

Why certify a type checker?

- Certified certification
- Introspective language design
- Intuitionistic metatheory

Certified certification

- It's the central component of systems for developing certified software. A faulty checker might accept faulty certificates
- Coq is used for industrial strength certification
- HOL-Light's 100 line type checker had a bug in it for 15 years. Uncovered by Flyspeck project
- No fixed idea about what can be implemented in type theory. E.g. Verified tactics

Introspective language design

- Sound engineering approach:
 - E.g. write a C compiler in C
 - Often first big test for a language
- Synergy between language design and implementation
 - E.g. GHC leading the development of Haskell

Intuitionistic metatheory

- A type checker includes and executable semantics for type theory
- Martin-Löf worked in an informal intuitionistic metalanguage
- Working formally gives:
 - Computer assistance
 - High assurance
- Another synergy here: E.g. induction recursion

Type checking and normalisation

Lists

- data List (A : Set) : Set where
 nil : List A
 - cons : $A \rightarrow List A \rightarrow List A$
- app : List A → List A → List A
 app nil ws = ws
 app (cons v vs) ws = cons v (app vs ws)
- Typing constraints from definition of app:
- List A = List A
- List A = List A

Vectors

data Vec (A : Set) : Nat → Set where
 nil : Vec A zero

cons : $A \rightarrow Vec A n \rightarrow Vec A (suc n)$

app : Vec A m → Vec A n → Vec A (m + n)
app nil ws = ws
app (cons v vs) ws = cons v (app vs ws)

Typing constraints from definition of app: Vec A (zero + n) = Vec A n Vec A (suc m + n) = Vec A (suc (m + n))

Well typed syntax (I)

Example: Simply typed lambda calculus

Types are base $\iota \text{ or } \sigma \rightarrow \tau$, contexts are lists of types data Tm : Con \rightarrow Ty \rightarrow Set where var : Var $\Gamma \sigma \rightarrow$ Tm $\Gamma \sigma$ app : Tm $\Gamma (\sigma \rightarrow \tau) \rightarrow$ Tm $\Gamma \sigma$ Tm $\Gamma \tau$ λ : Tm (Γ , σ) $\tau \rightarrow$ Tm $\Gamma (\sigma \rightarrow \tau)$

We express the syntax and the type system in one

Well typed syntax (2)

Well scoped nameless variables (de Bruijn indices)

data Var : Con \rightarrow Ty \rightarrow Set where top : Var (Γ , σ) σ pop : Var (Γ $\sigma \rightarrow$ (τ : Ty) \rightarrow Var (Γ , τ) σ

Never have to deal with dangling variables

Big-step normalisation

- Define a partial function nf : Tm → Nf such that it satisfies the following properties:
 - termination: ∀t.∃n.nf t ↓ n
 - completeness: emb (nf t) \cong t
 - soundness: $t \cong u \rightarrow nf t = nf u$

Traditional small-step normalisation

- - Not how you'd implement it
 - Doesn't work well with $\beta\eta$ -equality
- Normalisation-by-evaluation (NBE)
 - Practical approach to $\beta\eta$ -normalisation
 - Everything at once, higher order
- Big-step normalisation (BSN)
 - A variation on NBE
 - Separates computation and termination, first order

Big-step normalisation for Abadi, Cardelli and Curien's λ^{σ} -calculus

Joint work with Thorsten Altenkirch

λ^{σ} syntax

We have a well typed syntax of terms and substitions -- conventional lambda and application λ : Tm (Γ , σ) $\tau \rightarrow$ Tm Γ ($\sigma \rightarrow \tau$) app : Tm Γ ($\sigma \rightarrow \tau$) \rightarrow Tm $\Gamma \sigma \rightarrow$ Tm $\Gamma \tau$

-- variables and expl. substitution top : $Tm(\Gamma, \sigma)\sigma$

 $[_] : \operatorname{Tm} \Delta \sigma \rightarrow \operatorname{Sub} \Gamma \Delta \rightarrow \operatorname{Tm} \Gamma \sigma$

-- explicit weakening \uparrow^{σ} : Sub ([, σ) [

Equational theory

We can write down the laws of the equational theory as an inductively defined relation on terms and substitutions

subid	: t [id] ≅ t
β	: app (λt) u \cong t [id , u]
proj	: top [ts , t] ≅ t
compid	: ts • id \cong ts

Implementing the normaliser

We do this in two stages:

Values

are either lambda closures or neutral (stuck) terms

data Val : Con \rightarrow Ty \rightarrow Set where

ne : Ne $\Gamma \tau \rightarrow Val \Gamma \tau$

Evalution (I)

We define the following operations mutually:

eval : Tm $\Delta \sigma \rightarrow \text{Env} \Gamma \Delta \rightarrow \text{Val} \Gamma \sigma$ seval : Sub $\Delta E \rightarrow \text{Env} \Gamma \Delta \rightarrow \text{Env} \Gamma E$ _@@_ : Val $\Gamma (\sigma \rightarrow \tau) \rightarrow$ Val $\Gamma \sigma \rightarrow \text{Val} \Gamma \tau$

Afterwards we prove that they terminate

Evaluation (2) eval: $\operatorname{Tm} \Delta \sigma \rightarrow \operatorname{Env} \Gamma \Delta \rightarrow \operatorname{Val} \Gamma \sigma$ $= \lambda v t vs$ eval (λt) vs eval (app t u) vs (eval t vs) 00 (eval u vs) eval top (vs, v) = veval (t [ts]) vs eval t (seval ts vs)

β-normal η-long forms

are either lambda-abstraction or neutral embedded at base type

data Nf : Con \rightarrow Ty \rightarrow Set where

 λn : Nf (Δ , σ) T \rightarrow Nf ($\sigma \rightarrow$ T)

ne : Ne $\Gamma \iota \rightarrow Nf \Gamma \iota$

is defined by recursion on types.

quote : Val $\Gamma \sigma \rightarrow \text{Nf} \Gamma \sigma$

-- quote the components
quote_l (ne n) = ne (nquote n)

-- perform eta expansion $quote_{(\sigma \rightarrow \tau)} f = \lambda n (quote_{\tau} (wk f @@ top)))$

The normaliser

Having defined eval and quote we can define:

- nf : Tm $\Gamma \sigma \rightarrow Nf \Gamma \sigma$
- $nf t = quote_{\sigma}$ (eval t id_r)

which is:

- terminating (proof using strong computability)
- sound (proof using logical relations)
- and complete (simple induction on big-step relation)

BSN Summary

- Write a partial normaliser function
- Prove termination over graph (big-step semantics) of partial function
- Combine function and termination proof using Bove-Capretta technique to get a total function
- Note: Termination proof doesn't add computational content, computational behaviour remains the same as the partial function

Dependent types

 Can extend this approach to dependent types but equational theory is now mutually defined with the syntax:

 Also contexts, types, terms and substitutions must be mutually defined

Related work

- Simple types
 - NBE for λ^{σ} -calculus C. Coquand
- Dependent types
 - Coq-in-Coq Barras
 - Internal Type Theory Dybjer
 - NBE for Martin-Löf's logical framework Danielsson

Conclusion

- Dependent typed languages are suited to implementing languages and much more
- I want to verify a type checker for higher assurance, and to explore both dependently typed programming and intuitionistic metatheory
- Big-step normalisation is a practical, scalable approach to normalisation