
Indexed Containers

Tallinn

Peter Morris

pwm@cs.nott.ac.uk

University of Nottingham

Indexed Containers – p. 1

What is a Container?

Barry Jay—Shapely Types

Joyal—Species

Hyland and Gambino—Polynomial Functors

Petersson and Synek—Tree Sets

All a means to have an general notion of data-type. In
order to develop some theory of data.

All include some separation of the shape of data and the
storage of information.

Indexed Containers – p. 2

What is a Container? (2)

A container has a set of shapes S .

data A : ⋆
[A] : ⋆

where
[] : [A]

a : A as : [A]
a::as : [A]

If we abstract away for the business of storing data, for
instance by considering only the type [One], we get
something suspiciously like the natural numbers.

The shape of a list, is given by its length.

Indexed Containers – p. 3

What is a Container? (3)

If we know the shape of a list, we know how many pieces of
data are stored within it. A list of length n contains n pieces
of data.

More generally we’ll want to construct the set of positions
P s where data is stored within a piece of data with the
shape s .

For lists the positions can be given by finite sets:

data n : Nat
Fin n : ⋆

where
fzero : Fin (1+ n)

i : Fin n
fsucc i : Fin (1+n)

Indexed Containers – p. 4

Containers

data
Cont : ⋆

where S : ⋆ P : S → ⋆
S�P : Cont

It’s often useful to draw diagrams of these things:

s : S

S�P

→

P s

Indexed Containers – p. 5

Container Functors

Every container gives rise to a functor given by:

(S�P) X = Σ(s : S).(P s → X)

(S�P) f (s, g) = (s, g◦f)

For the objects, we pick a shape s and then assign a piece of
data to every position p : P s .

With lists, once we’ve fixed a length n, Fin n → X is a
collection of n X s.

Indexed Containers – p. 6

Container Morphisms

A container morphism is given by:

data
C ,D : Cont

CMor C D : ⋆
where

sf : S → T

pf : (s : S) → Q (f s) → P s

cmor sf pf : CMor (S�P) (T�Q)

A function between shapes and a contravariant function on
positions. We have to explain where the data in the new
container came from in the old container.

This notion captures precisely the polymorphic functions
between container functors.

Indexed Containers – p. 7

Closure Properties

(K T) X ≃ (T�λ → Zero) X

Id X ≃ (One�λ → One) X

(S�P) X + (T�Q) X ≃ (S + T�[P ,Q]) X

(S�P) X × (T�Q) X ≃ (S × T�λ(s, t) → P s + Q t) X

Indexed Containers – p. 8

Constructing Fixed Points

Binary containers have 2 position sets.

They allow us to encode composition:

F : ⋆ × ⋆ → ⋆ G : ⋆ → ⋆
F [G] : ⋆ → ⋆

; F [G] X = F (X , (G X))

(S�P ,Q)[T�R] X ≃

((S�Q) T)�λ(s , f) → P s + Σ(q : Q s).R (f s)

Indexed Containers – p. 9

Constructing Fixed Points (2)

(S�P ,Q)[T�R] diagrammatically:

s : S

S�P ,Q
Q s

p : Ps 7→ f p

T�R

R (f p)•

Now, we want to construct the least fixed point such that:

µ (S�P ,Q) X ≃ (S�P ,Q)[µ (S�P ,Q)] X

Indexed Containers – p. 10

Constructing Fixed Points (3)

The shapes are given by the least fixed point of the
equation:

X = (S�Q) X

i.e. the lfp of a unary container. Type theoreticians know
this as a W-Type:

data A : ⋆ B : A → ⋆
W A B : ⋆

where
a : A f : B a → W A B

sup a f : W A B

The shapes of the lfp are trees of shapes branching over the
sub-tree positions.

Indexed Containers – p. 11

Constructing Fixed Points (4)

We can then define the positions as paths through such a
tree to a payload position. This can be done recursively:

Path P Q (s, f) = P s + Σ(q : Q s).Path P Q (f q)

So, to interpret a parameterised least fixed point
construction, we need the least fixed point of a unary
container to exist (W-types). It can also be show that the
parameterised greatest fixed point exists under the same
conditions.

Indexed Containers – p. 12

Advanced types

How should we go about modelling types like the vectors or
the well scoped lambda terms?

data n : Nat A : ⋆
Vec n A : ⋆

where

[] : Vec 0 A
a : A as : Vec n A
a::as : Vec (1+n) A

data n : Nat
Lam n : ⋆

where

i : Fin n
var i : Lam n

f , a : Lam n
f $a : Lam n

t : Lam (1+ n)
λ t : Lam n

Or Fin, or W itself? Indexed Containers – p. 13

Indexed Containers

Firstly, we need to index the shapes:

data O : ⋆
Cont O : ⋆

where

S : O → ⋆

P : (o : O) → S o → ⋆

S�P : Cont O

We can now model the vectors by:

(λn → One)�λn s → Fin n : Cont Nat

Indexed Containers – p. 14

Indexed Containers

For symmetry, though, we would like that the payload can
also be indexed. The way we set it up here we have a
function that assigns to every position, an index:

data
I ,O : ⋆

Cont I O : ⋆
where

S : O → ⋆

P : (o : O) → S o → ⋆

φ : (o : O) → S o → P s → I

S�P φ : Cont I O

Indexed Containers – p. 15

Indexed Functors

An indexed container in Cont I O gives rise to a indexed
functor in (I → ⋆) → (O → ⋆) given by:

(S�P φ) X o = Σ(s : S o).(p : P o s) → X (φ o s p)

(S�P φ) f (s , g) = (s , g◦f)

We exposed a polynomial structure on plain containers, but
what structure is appropriate for indexed containers?

Indexed Containers – p. 16

Constructing advanced types

We can re-index functors, which amounts to
pre-composition:

F : (I → ⋆) → (O → ⋆) f : O ′
→ O

∆F f : (I → ⋆) → (O ′
→ ⋆)

∆F f X o ′ = F (f o ′)

For containers that becomes:

∆(S�P φ) f X o ′
≃ (S (f o ′))�(P (f o ′)) (φ (f o ′))

Indexed Containers – p. 17

Constructing advanced types

∆ has left and right adjoints, which relate to Sigma and Pi.
Here (S�P φ) : Cont I O ′ and f : O ′

→ O :

Σ(S�P φ) f X o ≃

(Σ(o ′ : O ′).(f o ′ = p) × S o ′)�

(λ(o ′, eq , s) → P o ′ s) (λ(o ′, eq , s) p → φ o ′ s p)

Π(S�P φ) f X o ′
≃

((o ′ : O ′) → (f o = o ′) → S o ′)

�(λo ′ f → Σ(o ′ : O ′), (eq : f o = o ′).P o (f o eq)) · · ·

Indexed Containers – p. 18

Indexed fixed points

We want the least fixed point of a container in
Cont (I + O) O to be in Cont I O . We first construct indexed
W-types:

data

A : X → ⋆ x : X B : (x : X) → A x → ⋆

φ : (x : X) → (a : A x) → B x a → X

WX A x B φ : ⋆
where

a : A x f : (b : B x a) → WX A (φ x a b) B
supi a f : WX A x B φ

Indexed Containers – p. 19

	What is a Container?
	What is a Container? (2)
	What is a Container? (3)
	Containers
	Container Functors
	Container Morphisms
	Closure Properties
	Constructing Fixed Points
	Constructing Fixed Points (2)
	Constructing Fixed Points (3)
	Constructing Fixed Points (4)
	Advanced types
	Indexed Containers
	Indexed Containers
	Indexed Functors
	Constructing advanced types
	Constructing advanced types
	Indexed fixed points

