
An Extended Form of Shortcut Fusion with Multiple Applications

An Extended Form of Shortcut Fusion with
Multiple Applications

ALBERTO PARDO

Instituto de Computación
Universidad de la República

Montevideo - Uruguay

(joint work with João Fernandes, João Saraiva and Cecilia
Manzino)

Tallinn, March 24, 2009

An Extended Form of Shortcut Fusion with Multiple Applications

Modular programs

Separate parts are combined using intermediate data
structures.

factorial :: Int -> Int
factorial n = product (down n)

product :: [Int] -> Int
product [] = 1
product (a:as) = a * product as

down :: Int -> [Int]
down 0 = []
down n = n : down (n-1)

An Extended Form of Shortcut Fusion with Multiple Applications

Modular programs

Benefits

I Easier to understand

I Easier to maintain

Drawbacks

. Poor performance

An Extended Form of Shortcut Fusion with Multiple Applications

Modular programs

Benefits

I Easier to understand

I Easier to maintain

Drawbacks

. Poor performance

An Extended Form of Shortcut Fusion with Multiple Applications

Program fusion

factorial m = product (down m)

product [] = 1
product (a:as) = a * product as

down 0 = []
down m = m : down (m-1)

�ww
factorial 0 = 1
factorial m = m * factorial (m-1)

An Extended Form of Shortcut Fusion with Multiple Applications

Program fusion

factorial m = product (down m)

product [] = 1
product (a:as) = a * product as

down 0 = []
down m = m : down (m-1)

�ww
factorial 0 = 1
factorial m = m * factorial (m-1)

An Extended Form of Shortcut Fusion with Multiple Applications

Shortcut fusion for lists

Consumer

fold :: (b,a -> b -> b) -> [a] -> b
fold (n,c) [] = n
fold (n,c) (a:as) = c a (fold (n,c) as)

Producer

build :: (forall b. (b,a -> b -> b) -> c -> b)
-> c -> [a]

build g = g ([],(:))

fold/build
fold (n,c) . build g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Shortcut fusion for lists

Consumer

fold :: (b,a -> b -> b) -> [a] -> b
fold (n,c) [] = n
fold (n,c) (a:as) = c a (fold (n,c) as)

Producer

build :: (forall b. (b,a -> b -> b) -> c -> b)
-> c -> [a]

build g = g ([],(:))

fold/build
fold (n,c) . build g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Shortcut fusion for lists

Consumer

fold :: (b,a -> b -> b) -> [a] -> b
fold (n,c) [] = n
fold (n,c) (a:as) = c a (fold (n,c) as)

Producer

build :: (forall b. (b,a -> b -> b) -> c -> b)
-> c -> [a]

build g = g ([],(:))

fold/build
fold (n,c) . build g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Consumer: product

product [] = 1
product (a:as) = a * product as

�ww
product = fold (1,(*))

An Extended Form of Shortcut Fusion with Multiple Applications

Producer: down

down 0 = []
down m = m : down (m-1)

�ww
down = build gdown
where
gdown (n,c) 0 = n
gdown (n,c) m = c m (gdown (n,c) (m-1))

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1,(*))

down = build gdown
where
gdown (n,c) 0 = n
gdown (n,c) m = c m (gdown (n,c) (m-1))

factorial
= product . down
= fold (1,(*)) . build gdown
= gdown (1,(*))

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1,(*))

down = build gdown
where
gdown (n,c) 0 = n
gdown (n,c) m = c m (gdown (n,c) (m-1))

factorial
= product . down

= fold (1,(*)) . build gdown
= gdown (1,(*))

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1,(*))

down = build gdown
where
gdown (n,c) 0 = n
gdown (n,c) m = c m (gdown (n,c) (m-1))

factorial
= product . down
= fold (1,(*)) . build gdown

= gdown (1,(*))

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1,(*))

down = build gdown
where
gdown (n,c) 0 = n
gdown (n,c) m = c m (gdown (n,c) (m-1))

factorial
= product . down
= fold (1,(*)) . build gdown
= gdown (1,(*))

An Extended Form of Shortcut Fusion with Multiple Applications

Extended shortcut fusion

Let N be a type constructor with an associated map function

mapN :: (a -> b) -> (N a -> N b)

Producer

buildN :: (forall b. (b,a -> b -> b) -> c -> N b)
-> c -> N [a]

buildN g = g ([],(:))

extended fold/build
mapN (fold (n,c)) . buildN g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Extended shortcut fusion

Let N be a type constructor with an associated map function

mapN :: (a -> b) -> (N a -> N b)

Producer

buildN :: (forall b. (b,a -> b -> b) -> c -> N b)
-> c -> N [a]

buildN g = g ([],(:))

extended fold/build
mapN (fold (n,c)) . buildN g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Extended shortcut fusion

Let N be a type constructor with an associated map function

mapN :: (a -> b) -> (N a -> N b)

Producer

buildN :: (forall b. (b,a -> b -> b) -> c -> N b)
-> c -> N [a]

buildN g = g ([],(:))

extended fold/build
mapN (fold (n,c)) . buildN g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic shortcut fusion [Manzino & Pardo, SBLP’08]

type N a = m a

mmap :: Monad m => (a -> b) -> (m a -> m b)
mmap f m = do {a <- m; return (f a)}

Producer

mbuild :: Monad m
=> (forall b. (b,a -> b -> b) -> c -> m b)
-> c -> m [a]

mbuild g = g ([],(:))

fold/mbuild

do {as <- mbuild g x; return (fold (n,c) as)}
= g (n,c) x

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic shortcut fusion [Manzino & Pardo, SBLP’08]

type N a = m a

mmap :: Monad m => (a -> b) -> (m a -> m b)
mmap f m = do {a <- m; return (f a)}

Producer

mbuild :: Monad m
=> (forall b. (b,a -> b -> b) -> c -> m b)
-> c -> m [a]

mbuild g = g ([],(:))

fold/mbuild

do {as <- mbuild g x; return (fold (n,c) as)}
= g (n,c) x

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic shortcut fusion [Manzino & Pardo, SBLP’08]

type N a = m a

mmap :: Monad m => (a -> b) -> (m a -> m b)
mmap f m = do {a <- m; return (f a)}

Producer

mbuild :: Monad m
=> (forall b. (b,a -> b -> b) -> c -> m b)
-> c -> m [a]

mbuild g = g ([],(:))

fold/mbuild

do {as <- mbuild g x; return (fold (n,c) as)}
= g (n,c) x

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine

lenLine = do {cs <- getLine; return(length cs)}

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

getLine :: IO String
getLine = do c <- getChar

if c == eol
then return []
else do cs <- getLine

return (c : cs)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine (2)

lenLine = do {cs <- getLine; return(length xs)}

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

getLine :: IO String
getLine = do c <- getChar

if c == eol
then return []
else do cs <- getLine

return (c : cs)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine (3)

length = fold (0,h) where h x y = 1 + y

getLine = mbuild ggL
where
ggL (n,c) = do c’ <- getChar

if c’ == eol
then return n
else do b <- ggL (n,c)

return (c c’ b)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine (4)

lenLine
= do {cs <- getLine; return(length cs)}
= do {cs <- mbuild ggL; return(fold (0,h) cs)}
= ggL (0,h)

lenLine = do c <- getChar
if c == eol

then return 0
else do n <- lenLine

return (1 + n)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine (4)

lenLine
= do {cs <- getLine; return(length cs)}
= do {cs <- mbuild ggL; return(fold (0,h) cs)}
= ggL (0,h)

lenLine = do c <- getChar
if c == eol

then return 0
else do n <- lenLine

return (1 + n)

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion of effectful functions [Ghani & Johann 08], [Chitil 00]

effectful fold/mbuild

do {as <- mbuild g x; fold (n,c) as}
=
do {m <- g (n,c) x; m}

where

n :: m b
c :: a -> m b -> m b
fold (n,c) :: [a] -> m b

An Extended Form of Shortcut Fusion with Multiple Applications

Circular program derivation [Fernandes & Pardo & Saraiva,

HW’07]

type N a = (a,z)

mapN :: (a -> b) -> ((a,z) -> (b,z))
mapN f (a,z) = (f a,z)

Producer

buildp :: (forall b. (b,a -> b -> b) -> c -> (b,z))
-> c -> ([a],z)

buildp g = g ([],(:))

fold/buildp

(fold (n,c) × id) . buildp g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Circular program derivation [Fernandes & Pardo & Saraiva,

HW’07]

type N a = (a,z)

mapN :: (a -> b) -> ((a,z) -> (b,z))
mapN f (a,z) = (f a,z)

Producer

buildp :: (forall b. (b,a -> b -> b) -> c -> (b,z))
-> c -> ([a],z)

buildp g = g ([],(:))

fold/buildp

(fold (n,c) × id) . buildp g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Circular program derivation [Fernandes & Pardo & Saraiva,

HW’07]

Consumer

pfold :: (z -> b, a -> b -> z -> b)
-> ([a], z) -> b

pfold (hn,hc) = pL
where pL ([],z) = hn z

pL (a:as,z) = hc a (pL (as,z)) z

pfold/buildp

pfold (hn,hc) . buildp g $ i
= let (v, z) = g (n,c) i

n = hn z
c x y = hc x y z

in v

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax

repmax = replace . copymax

replace :: ([a],a) -> [a]
replace ([], a) = []
replace (x:xs, a) = a : replace (xs, a)

{- lists with nonnegative elements -}
copymax :: Ord a => [a] -> ([a],a)
copymax [] = ([], 0)
copymax (x:xs) = let (ys,m) = copymax xs

in (x : ys, max x m)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax (2)

repmax = replace . copymax

replace :: ([a],a) -> [a]
replace ([], a) = []
replace (x:xs, a) = a : replace (xs, a)

{- lists with nonnegative elements -}
copymax :: Ord a => [a] -> ([a],a)
copymax [] = ([], 0)
copymax (x:xs) = let (ys,m) = copymax xs

in (x : ys, max x m)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax (3)

repmax = replace . copymax

replace :: ([a],a) -> [a]
replace = pfold (hn,hc)

where hn _ = []
hc _ l m = m:l

copymax :: Ord a => [a] -> ([a],a)
copymax = buildp g

where g (n, c) [] = (n, 0)
g (n, c) (x:xs)

= let (ys, m) = g (n, c) xs
in (c x ys, max x m)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax (4)

repmax xs = zs
where
(zs, m) = repm xs
repm [] = ([],0)
repm (x:xs) = let (ys,m’) = repm xs

in (m : ys, max x m’)

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic circular program derivation [Pardo & Fernandes &

Saraiva, PEPM’09]

type N a = m (a,z)

mapN f = mmap (f × id)

mmap f m = do {a <- m; return (f a)}

Producer

mbuildp :: Monad m =>
(forall b. (b,a -> b -> b) -> m (b,z))
-> m ([a],z)

mbuildp g = g ([],(:))

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic circular program derivation

fold/mbuildp

do {(xs,z) <- mbuildp g;return (fold (n,c) xs,z)}
= g (n,c)

pfold/mbuildp Let m be a recursive monad.

do {(xs,z) <- mbuildp g;
return (pfold (hn, hc) (xs,z))}

=
mdo {(v, z) <- let n = hn z

c x y = hc x y z
in g (n, c);

return v}

An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing

newtype Parser a = P (String -> [(a,String)])

instance Monad Parser where
return a = P (\cs -> [(a,cs)])
p »= f = ...

pzero :: Parser a
pzero = P (\cs -> [])

(<|>) :: Parser a -> Parser a -> Parser a
(P p) <|> (P q)

= P (\cs -> case p cs ++ q cs of
[] -> []
(x:xs) -> [x])

An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing (2)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

applyXor :: ([Bit], Bit) -> [Bit]
applyXor ([], _) = []
applyXor (b:bs, s) = xor s b : applyXor (bs, s)

bitstring :: Parser ([Bit], Bit)
bitstring = do b <- bit

(bs, s) <- bitstring
return (b:bs, xor s b)

<|> return ([], 0)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing (3)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

applyXor = pfold (hn,hc)
where hn _ = []

hc b r s = xor b s : r

bitstring = mbuildp g
where g (n, c)

= do b <- bit
(bs, s) <- g (n, c)
return (c b bs,xor b s)

<|> return (n,0)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing (4)

transform
= mdo (bs, s)

<- let gbits
= do b <- bit

(bs’, s’) <- gbits
return (xor s b : bs’,

xor s’ b)
<|> return ([],0)

in gbits
return bs

An Extended Form of Shortcut Fusion with Multiple Applications

pfold as higher-order fold

pfold (hn, hc) :: ([a], z) -> b

fold (fn, fc) :: [a] -> (z -> b)

pfold (hn, hc) = apply . ((fold (fn, fc)) × id)

An Extended Form of Shortcut Fusion with Multiple Applications

pfold as higher-order fold

pfold (hn, hc) :: ([a], z) -> b

fold (fn, fc) :: [a] -> (z -> b)

pfold (hn, hc) = apply . ((fold (fn, fc)) × id)

An Extended Form of Shortcut Fusion with Multiple Applications

pfold as higher-order fold

pfold (hn, hc) :: ([a], z) -> b

fold (fn, fc) :: [a] -> (z -> b)

pfold (hn, hc) = apply . ((fold (fn, fc)) × id)

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic H.O. program derivation [PEPM’09]

type N a = m (a,z)

mapN f = mmap (f × id)

mmap f m = do {a <- m; return (f a)}

Producer

mbuildp :: Monad m =>
(forall b. (b,a -> b -> b) -> c -> m (b,z))
-> c -> m ([a],z)

mbuildp g = g ([],(:))

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic H.O. program derivation

pfold as higher-order fold

pfold (hn, hc) = apply . ((fold (fn, fc)) × id)

higher-order pfold/mbuildp

do {(t,z) <- mbuildp g;
return (pfold (hn, hc) (t,z))}

=
do {(f,z) <- g (fn, fc));

return (f z)}

An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing

applyXor = pfold (hn,hc)
where hn _ = []

hc b r s = (xor b s) : r

�ww
applyXor = fold (fn,fc)

where fn = _ -> []
fc b r = \s -> (xor b s): r s

An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing (2)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

�ww
transform = do (f,s) <- gbits

return (f s)
where
gbits = do b <- bit

(f,s) <- gbits
return (\s’ -> (xor b s’): f s’,

xor b s)
<|> return (_ -> [],0)

An Extended Form of Shortcut Fusion with Multiple Applications

Conclusions

I We presented shortcut fusion laws for the derivation of
circular and higher-order (monadic) programs.

I The laws are simple and easy to apply in practice.

I The laws developed are generic, in the sense that they can
be defined for a wide class of datatyes and monads.

I Like standard shortcut fusion (fold/build), our laws can also
be implemented in GHC using the RULES pragma (rewrite
rules).

An Extended Form of Shortcut Fusion with Multiple Applications

Summary of results

circular

cons ◦ prod

higher order

α α

β

β

An Extended Form of Shortcut Fusion with Multiple Applications

Future Work

I Multiple intermediate data structure elimination;

prog = fn f2 . f1

I Relation with Attribute Grammars.

