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An Extended Form of Shortcut Fusion with Multiple Applications

Modular programs

Separate parts are combined using intermediate data
structures.

factorial :: Int -> Int
factorial n = product (down n)

product :: [Int] -> Int
product [] = 1
product (a:as) = a * product as

down :: Int -> [Int]
down 0 = []
down n = n : down (n-1)
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Modular programs

Benefits

I Easier to understand

I Easier to maintain

Drawbacks

. Poor performance
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Program fusion

factorial m = product (down m)

product [] = 1
product (a:as) = a * product as

down 0 = []
down m = m : down (m-1)

�ww
factorial 0 = 1
factorial m = m * factorial (m-1)
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Shortcut fusion for lists

Consumer

fold :: (b,a -> b -> b) -> [a] -> b
fold (n,c) [] = n
fold (n,c) (a:as) = c a (fold (n,c) as)

Producer

build :: (forall b. (b,a -> b -> b) -> c -> b)
-> c -> [a]

build g = g ([],(:))

fold/build
fold (n,c) . build g = g (n,c)
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Consumer: product

product [] = 1
product (a:as) = a * product as

�ww
product = fold (1,(*))
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Producer: down

down 0 = []
down m = m : down (m-1)

�ww
down = build gdown
where
gdown (n,c) 0 = n
gdown (n,c) m = c m (gdown (n,c) (m-1))
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Fusion: factorial

product = fold (1,(*))

down = build gdown
where
gdown (n,c) 0 = n
gdown (n,c) m = c m (gdown (n,c) (m-1))

factorial
= product . down
= fold (1,(*)) . build gdown
= gdown (1,(*))
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Extended shortcut fusion

Let N be a type constructor with an associated map function

mapN :: (a -> b) -> (N a -> N b)

Producer

buildN :: (forall b. (b,a -> b -> b) -> c -> N b)
-> c -> N [a]

buildN g = g ([],(:))

extended fold/build
mapN (fold (n,c)) . buildN g = g (n,c)
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Monadic shortcut fusion [Manzino & Pardo, SBLP’08]

type N a = m a

mmap :: Monad m => (a -> b) -> (m a -> m b)
mmap f m = do {a <- m; return (f a)}

Producer

mbuild :: Monad m
=> (forall b. (b,a -> b -> b) -> c -> m b)
-> c -> m [a]

mbuild g = g ([],(:))

fold/mbuild

do {as <- mbuild g x; return (fold (n,c) as)}
= g (n,c) x
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Example: lenLine

lenLine = do {cs <- getLine; return(length cs)}

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

getLine :: IO String
getLine = do c <- getChar

if c == eol
then return []
else do cs <- getLine

return (c : cs)
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Example: lenLine (2)

lenLine = do {cs <- getLine; return(length xs)}

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

getLine :: IO String
getLine = do c <- getChar

if c == eol
then return []
else do cs <- getLine

return (c : cs)
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Example: lenLine (3)

length = fold (0,h) where h x y = 1 + y

getLine = mbuild ggL
where
ggL (n,c) = do c’ <- getChar

if c’ == eol
then return n
else do b <- ggL (n,c)

return (c c’ b)
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Example: lenLine (4)

lenLine
= do {cs <- getLine; return(length cs)}
= do {cs <- mbuild ggL; return(fold (0,h) cs)}
= ggL (0,h)

lenLine = do c <- getChar
if c == eol

then return 0
else do n <- lenLine

return (1 + n)
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Example: lenLine (4)
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lenLine = do c <- getChar
if c == eol

then return 0
else do n <- lenLine

return (1 + n)
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Fusion of effectful functions [Ghani & Johann 08], [Chitil 00]

effectful fold/mbuild

do {as <- mbuild g x; fold (n,c) as}
=
do {m <- g (n,c) x; m}

where

n :: m b
c :: a -> m b -> m b
fold (n,c) :: [a] -> m b
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Circular program derivation [Fernandes & Pardo & Saraiva,

HW’07]

type N a = (a,z)

mapN :: (a -> b) -> ((a,z) -> (b,z))
mapN f (a,z) = (f a,z)

Producer

buildp :: (forall b. (b,a -> b -> b) -> c -> (b,z))
-> c -> ([a],z)

buildp g = g ([],(:))

fold/buildp

(fold (n,c) × id) . buildp g = g (n,c)
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Circular program derivation [Fernandes & Pardo & Saraiva,

HW’07]

Consumer

pfold :: (z -> b, a -> b -> z -> b)
-> ([a], z) -> b

pfold (hn,hc) = pL
where pL ([],z) = hn z

pL (a:as,z) = hc a (pL (as,z)) z

pfold/buildp

pfold (hn,hc) . buildp g $ i
= let (v, z ) = g (n,c) i

n = hn z
c x y = hc x y z

in v
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Example: repmax

repmax = replace . copymax

replace :: ([a],a) -> [a]
replace ([], a) = []
replace (x:xs, a) = a : replace (xs, a)

{- lists with nonnegative elements -}
copymax :: Ord a => [a] -> ([a],a)
copymax [] = ([], 0)
copymax (x:xs) = let (ys,m) = copymax xs

in (x : ys, max x m)
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Example: repmax (3)

repmax = replace . copymax

replace :: ([a],a) -> [a]
replace = pfold (hn,hc)

where hn _ = []
hc _ l m = m:l

copymax :: Ord a => [a] -> ([a],a)
copymax = buildp g

where g (n, c) [] = (n, 0)
g (n, c) (x:xs)

= let (ys, m) = g (n, c) xs
in (c x ys, max x m)
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Example: repmax (4)

repmax xs = zs
where
(zs, m ) = repm xs
repm [] = ([],0)
repm (x:xs) = let (ys,m’) = repm xs

in ( m : ys, max x m’)
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Monadic circular program derivation [Pardo & Fernandes &

Saraiva, PEPM’09]

type N a = m (a,z)

mapN f = mmap (f × id)

mmap f m = do {a <- m; return (f a)}

Producer

mbuildp :: Monad m =>
(forall b. (b,a -> b -> b) -> m (b,z))
-> m ([a],z)

mbuildp g = g ([],(:))
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Monadic circular program derivation

fold/mbuildp

do {(xs,z) <- mbuildp g;return (fold (n,c) xs,z)}
= g (n,c)

pfold/mbuildp Let m be a recursive monad.

do {(xs,z) <- mbuildp g;
return (pfold (hn, hc) (xs,z))}

=
mdo {(v, z ) <- let n = hn z

c x y = hc x y z
in g (n, c);

return v}
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Example: Parsing

newtype Parser a = P (String -> [(a,String)])

instance Monad Parser where
return a = P (\cs -> [(a,cs)])
p »= f = ...

pzero :: Parser a
pzero = P (\cs -> [])

(<|>) :: Parser a -> Parser a -> Parser a
(P p) <|> (P q)

= P (\cs -> case p cs ++ q cs of
[] -> []
(x:xs) -> [x])



An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing (2)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

applyXor :: ([Bit], Bit) -> [Bit]
applyXor ([], _) = []
applyXor (b:bs, s) = xor s b : applyXor (bs, s)

bitstring :: Parser ([Bit], Bit)
bitstring = do b <- bit

(bs, s) <- bitstring
return (b:bs, xor s b)

<|> return ([], 0)
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Example: Parsing (3)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

applyXor = pfold (hn,hc)
where hn _ = []

hc b r s = xor b s : r

bitstring = mbuildp g
where g (n, c)

= do b <- bit
(bs, s) <- g (n, c)
return (c b bs,xor b s)

<|> return (n,0)
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Example: Parsing (4)

transform
= mdo (bs, s )

<- let gbits
= do b <- bit

(bs’, s’) <- gbits
return (xor s b : bs’,

xor s’ b)
<|> return ([],0)

in gbits
return bs
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pfold as higher-order fold

pfold (hn, hc) :: ([a], z) -> b

fold (fn, fc) :: [a] -> (z -> b)

pfold (hn, hc) = apply . ((fold (fn, fc)) × id)
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Monadic H.O. program derivation [PEPM’09]

type N a = m (a,z)

mapN f = mmap (f × id)

mmap f m = do {a <- m; return (f a)}

Producer

mbuildp :: Monad m =>
(forall b. (b,a -> b -> b) -> c -> m (b,z))
-> c -> m ([a],z)

mbuildp g = g ([],(:))
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Monadic H.O. program derivation

pfold as higher-order fold

pfold (hn, hc) = apply . ((fold (fn, fc)) × id)

higher-order pfold/mbuildp

do {(t,z) <- mbuildp g;
return (pfold (hn, hc) (t,z))}

=
do {(f,z) <- g (fn, fc));

return (f z)}
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Example: Parsing

applyXor = pfold (hn,hc)
where hn _ = []

hc b r s = (xor b s) : r

�ww
applyXor = fold (fn,fc)

where fn = \_ -> []
fc b r = \s -> (xor b s): r s
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Example: Parsing (2)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

�ww
transform = do (f,s) <- gbits

return (f s)
where
gbits = do b <- bit

(f,s) <- gbits
return (\s’ -> (xor b s’): f s’,

xor b s)
<|> return (\_ -> [],0)
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Conclusions

I We presented shortcut fusion laws for the derivation of
circular and higher-order (monadic) programs.

I The laws are simple and easy to apply in practice.

I The laws developed are generic, in the sense that they can
be defined for a wide class of datatyes and monads.

I Like standard shortcut fusion (fold/build), our laws can also
be implemented in GHC using the RULES pragma (rewrite
rules).
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Summary of results

circular

cons ◦ prod

higher order

α α

β

β
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Future Work

I Multiple intermediate data structure elimination;

prog = fn . ... . f2 . f1

I Relation with Attribute Grammars.


