An Extended Form of Shortcut Fusion with Multiple Applications

An Extended Form of Shortcut Fusion with
Multiple Applications

ALBERTO PARDO

Instituto de Computacion
Universidad de la Republica
Montevideo - Uruguay

(joint work with Joao Fernandes, Jodo Saraiva and Cecilia
Manzino)

Tallinn, March 24, 2009

An Extended Form of Shortcut Fusion with Multiple Applications

e —
Modular programs

Separate parts are combined using intermediate data
structures.

factorial :: Int -> Int
factorial n = product (down n)

product :: [Int] —> Int
product [] =1

product (a:as) = a » product as
down :: Int —> [Int]

down 0 = []

down n = n : down (n-1)

An Extended Form of Shortcut Fusion with Multiple Applications

Modular programs

Benefits

» Easier to understand

» Easier to maintain

An Extended Form of Shortcut Fusion with Multiple Applications

Modular programs

Benefits

» Easier to understand

» Easier to maintain

Drawbacks

> Poor performance

An Extended Form of Shortcut Fusion with Multiple Applications

Program fusion

factorial m = product (down m)

product [] =1

product (a:as) = a *» product as
down 0 = []

down m = m down (m-1)

An Extended Form of Shortcut Fusion with Multiple Applications

Program fusion

factorial m = product (down m)

product [] =1

product (a:as) = a *» product as
down 0 = []

down m = m down (m-1)

l

factorial 0 =1
factorial m = m * factorial (m-1)

An Extended Form of Shortcut Fusion with Multiple Applications

Shortcut fusion for lists

Consumer
fold :: (b,a > b -> b) -> [a] -> Db
fold (n,c) [] = n

fold (n,c) (a:as) = ¢ a (fold (n,c) as)

An Extended Form of Shortcut Fusion with Multiple Applications

Shortcut fusion for lists

Consumer

fold :: (b,a > b -> b) -> [a] -> Db

fold (n,c) [] = n

fold (n,c) (a:as) = ¢ a (fold (n,c) as)
Producer

build :: (forall b. (b,a —> b -—> b) -> ¢ —-> b)

-> c —> [a]
build g =g ([1,(:))

An Extended Form of Shortcut Fusion with Multiple Applications

Shortcut fusion for lists

Consumer

fold :: (b,a > b -> b) -> [a] -> Db

fold (n,c) [] = n

fold (n,c) (a:as) = ¢ a (fold (n,c) as)
Producer

build :: (forall b. (b,a —> b -—> b) -> ¢ —-> b)

-> c —> [a]
build g =g ([1,(:))

fold/build
fold (n,c) . build g =g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Consumer: product

1
a = product as

product []
product (a:as)

l

product = fold (1, (%))

An Extended Form of Shortcut Fusion with Multiple Applications

Producer: down

down 0 = []
down m = m : down (m-1)

l

down = build gdown
where
gdown (n,c)

0 =n
gdown (n,c) m

c m (gdown (n,c) (m-1))

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1, (%))

down = build gdown
where
gdown (n,c)

0O =n
gdown (n,c) m

c m (gdown (n,c) (m—-1))

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1, (%))

down = build gdown
where
gdown (n,c)

0O =n
gdown (n,c) m

c m (gdown (n,c) (m—-1))

factorial
= product . down

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1, (%))

down = build gdown
where
gdown (n,c)

0O =n
gdown (n,c) m

c m (gdown (n,c) (m—-1))

factorial
= product . down
= fold (1, (%¥)) . build gdown

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion: factorial

product = fold (1, (%))

down = build gdown
where

gdown (n,c) 0 = n

gdown (n,c) m = c¢c m (gdown (n,c) (m-1))
factorial

= product . down

= fold (1, (%¥)) . build gdown

gdown (1, (%))

An Extended Form of Shortcut Fusion with Multiple Applications

Extended shortcut fusion

Let N be a type constructor with an associated map function

mapN :: (a —> b) -> (N a —> N b)

An Extended Form of Shortcut Fusion with Multiple Applications

Extended shortcut fusion

Let N be a type constructor with an associated map function

mapN :: (a —> b) -> (N a —> N b)
Producer
buildN :: (forall b. (b,a -> b -> b) -> ¢ -> N b)

-> ¢ -> N [a]
buildN g =g ([1], (:))

An Extended Form of Shortcut Fusion with Multiple Applications

Extended shortcut fusion

Let N be a type constructor with an associated map function

mapN :: (a —> b) -> (N a —> N b)

Producer

buildN :: (forall b. (b,a -> b -> b) -> ¢ -> N b)
-> ¢ -> N [a]

buildN g =g ([1], (:))

extended fold/build
mapN (fold (n,c)) . buildN g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

e
Monadic shortcut fusion [Manzino & Pardo, SBLP’08]

type N a = m a

mmap :: Monad m => (a -> b) -> (m a —> m b)
mmap £f m = do {a <- m; return (f a)}

An Extended Form of Shortcut Fusion with Multiple Applications

e
Monadic shortcut fusion [Manzino & Pardo, SBLP’08]

type N a = m a

mmap :: Monad m => (a -> b) -> (m a —> m b)
mmap £f m = do {a <- m; return (f a)}
Producer

mbuild :: Monad m

=> (forall b. (b,a —> b —> b) -> ¢ —> m b)
-> ¢ —>m [a]
mbuild g =g ([], (:))

An Extended Form of Shortcut Fusion with Multiple Applications

e
Monadic shortcut fusion [Manzino & Pardo, SBLP’08]

type N a = m a

mmap :: Monad m => (a -> b) -> (m a —> m b)
mmap £f m = do {a <- m; return (f a)}
Producer

mbuild :: Monad m

=> (forall b. (b,a —> b —> b) -> ¢ —> m b)
-> ¢ —>m [a]

mbuild g =g ([], (:))
fold/mbuild
do {as <- mbuild g x; return (fold (n,c) as)}

=g (n,c) x

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine

lenLine = do {cs <- getlLine; return(length cs)}
length :: [a] —=> Int
length [] =0

length (x:xs) 1 + length xs
getLine :: IO String
getLine = do c¢ <- getChar
if ¢ == eol
then return []
else do cs <- getLine
return (c : cs)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: 1enLine (2)

lenLine = do {cs <- getlLine; return(length xs)}
length :: [a] —=> Int
length [] = 0

length (x:xs) 1 + length xs
getLine :: IO String
getLine = do c¢ <- getChar
if ¢ == eol
then return []
else do cs <- getLine
return (c : cs)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: 1enLine (3)

length = fold (0,h) where h x vy =1 + vy

getLine = mbuild ggL
where
ggl (n,c) = do ¢’ <- getChar
if ¢/ == eol
then return n
else do b <= ggL (n,c)
return (c c’ b)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine (4)

lenLine
= do {cs <- getlLine; return(length cs)}
= do {cs <- mbuild gglL; return(fold (0,h) cs)}
= ggL (0,h)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: lenLine (4)

lenLine
= do {cs <- getlLine; return(length cs)}
= do {cs <- mbuild gglL; return(fold (0,h) cs)}
= ggL (0,h)

lenLine = do ¢ <- getChar
if ¢ == eol
then return O
else do n <- lenLine
return (1 + n)

An Extended Form of Shortcut Fusion with Multiple Applications

Fusion of effectful functions [Ghani & Johann 08], [Chitil 00]

effectful fold/mbuild
do {as <- mbuild g x; fold (n,c) as}

do {m <- g (n,c) x; m}

where
n ::mb
c ::a->mb->mb

fold (n,c) :: [a] > m b

An Extended Form of Shortcut Fusion with Multiple Applications

Circular program derivation [Fernandes & Pardo & Saraiva,
HW'07]
type N a = (a,z)

mapN :: (a —> b) —> ((a,z) -> (b, z))
mapN £ (a,z) = (f a,z)

An Extended Form of Shortcut Fusion with Multiple Applications

Circular program derivation [Fernandes & Pardo & Saraiva,
HW'07]

type N a = (a,z)

mapN :: (a —> b) —> ((a,z) -> (b, z))
mapN £ (a,z) = (f a,z)
Producer

buildp :: (forall b. (b,a -> b -> b) -> ¢ -> (b,z))
-> c —> ([al,z)
buildp g = g ([], (:))

fold/buildp

(fold (n,c) X id) . buildp g = g (n,c)

An Extended Form of Shortcut Fusion with Multiple Applications

Circular program derivation [Fernandes & Pardo & Saraiva,
HW'07]

Consumer

pfold :: (z -=> b, a > b —> z —-> D)
-> (lal], z) —> Db
pfold (hn,hc) = pL
where pL ([],2z)
pL (a:as,z)

hn =z
hc a (pL (as,z)) z

pfold/buildp
pfold (hn,hc) . buildp g $ 1

= let (v, [z]) = g (n,c) 1
n = hn
c xy=hc xy|z]

in v

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax

repmax = replace . copymax

replace :: ([al,a) —-> [a]

replace ([], a) = []

replace (x:xs, a) = a : replace (xs, a)

{- lists with nonnegative elements -}

copymax :: Ord a => [a] -> ([a]l,a)
copymax [] = ([], 0)
copymax (x:xs) = let (ys,m) = copymax Xs

in (x : ys, max x m)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax (2)

repmax = replace . copymax

replace :: ([al,a) —-> [a]

replace ([], a) = []

replace (x:xs, a) = a : replace (xs, a)

{- lists with nonnegative elements -}

copymax :: Ord a => [a] -> ([a]l,a)
copymax [] = ([], 0)
copymax (x:xs) = let (ys,m) = copymax Xs

in (x : ys, max X m)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax (3)

repmax = replace . copymax

replace :: ([al,a) —> [a]
replace = pfold (hn,hc)
where hn _ = []
hc lm=m:1

copymax :: Ord a => [a] -> ([al,a)
copymax = buildp g
where g (n, c¢) [] = (n, 0)
g (n, c) (x:xs)
= let (ys, m) = g (n, c) xs

in (¢ x ys, max x m)

An Extended Form of Shortcut Fusion with Multiple Applications

Example: repmax (4)

repmax XS = ZS
where
(zs,[m]) = repm xs
repm [] = ([],0)
repm (x:xs) = let (ys,m’) = repm xs

in ((m] : ys, max x m’)

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic circular program derivation [Pardo & Fernandes &
Saraiva, PEPM’'09]

type N a = m (a,z)

mapN f = mmap (f X id)

mmap f m = do {a <- m; return (f a)}
Producer

mbuildp :: Monad m =>

(forall b. (b,a -—> b -> b) -> m (b, z))
->m ([a],z)
mbuildp g = g ([], (:))

An Extended Form of Shortcut Fusion with Multiple Applications

-
Monadic circular program derivation

fold/mbuildp

do {(xs,z) <- mbuildp g;return (fold (n,c) xs,z)}
=g (n,c)

pfold/mbuildp Let m be a recursive monad.

do {(xs,z) <- mbuildp g;
return (pfold (hn, hc) (xs,z))}

mdo {(v,[z]) <- let n = hn
c xy =hecxylz]
in g (n, <);
return v}

An Extended Form of Shortcut Fusion with Multiple Applications

E—
Example: Parsing

newtype Parser a = P (String -> [(a,String)])

instance Monad Parser where

return a = P (\cs -> [(a,cs)])
p »= £ =
pzero :: Parser a

pzero = P (\cs —> [])

(<|>) :: Parser a —> Parser a —> Parser a
(P p) <I> (P q)
=P (\cs —> case p cs ++ g cs of
[] -> []

(x:xs8) —> [x])

An Extended Form of Shortcut Fusion with Multiple Applications

-
Example: Parsing (2)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

applyXor :: ([Bit], Bit) -> [Bit]
applyXor ([1, _) = []
applyXor (b:bs, s) = xor s b : applyXor (bs, s)

bitstring :: Parser ([Bit], Bit)
bitstring = do Db <- bit
(bs, s) <- bitstring

return (b:bs, xor s b)
<|> return ([], 0)

An Extended Form of Shortcut Fusion with Multiple Applications

e
Example: Parsing (3)

transform = do (bs, s) <- bitstring
return (applyXor (bs, s))

applyXor = pfold (hn, hc)
where hn _ = []
hc brs = xo0orbs :r

bitstring = mbuildp g
where g (n, c)
= do b <- bit
(bs, s) <= g (n, <)
return (c b bs,xor b s)
<|> return (n,0)

An Extended Form of Shortcut Fusion with Multiple Applications

-
Example: Parsing (4)

transform
= mdo (bs,[s])
<- let gbits
= do b <- bit
(bs’, s’) <- gbits
return (xor b : bs’,
xor s’ Db)
<|> return ([],0)
in gbits
return bs

An Extended Form of Shortcut Fusion with Multiple Applications

-
pfold as higher-order fold

pfold (hn, hc) :: ([al, z) —> Db

An Extended Form of Shortcut Fusion with Multiple Applications

-
pfold as higher-order fold

pfold (hn, hc) :: ([al, z) —> Db

fold (fn, fc) :: [a]l] —> (z —> Db)

An Extended Form of Shortcut Fusion with Multiple Applications

-
pfold as higher-order fold

pfold (hn, hc) :: ([al, z) —> Db

fold (fn, fc) :: [a]l] —> (z —> Db)

pfold (hn, hc) = apply . ((fold (fn, fc)) x 1id)

An Extended Form of Shortcut Fusion with Multiple Applications

-
Monadic H.O. program derivation [PEPM’09]

type N a =m (a,z)

mapN f = mmap (f X id)

mmap f m = do {a <- m; return (f a)}

Producer

mbuildp :: Monad m =>
(forall b. (b,a > b > b) > c ->m (b,z))
-> c —>m ([a],z)

mbuildp g = g ([], (:))

An Extended Form of Shortcut Fusion with Multiple Applications

Monadic H.O. program derivation

pfold as higher-order fold

pfold (hn, hc) = apply . ((fold (fn, fc)) x id)

higher-order pfold/mbuildp

do {(t,z) <- mbuildp g;
return (pfold (hn, hc) (t,z))}

do {(f,z) <= g (fn, fc));
return (f z)}

An Extended Form of Shortcut Fusion with Multiple Applications

Example: Parsing

applyXor = pfold (hn, hc)
where hn _ = []
hc br s = (xor b s) :r

applyXor = fold (fn, fc)
where fn = _ —> []
fc br =\s —> (xor b s): r s

An Extended Form of Shortcut Fusion with Multiple Applications

-
Example: Parsing (2)

transform do (bs, s) <- bitstring

return (applyXor (bs, s))

l

transform = do (f,s) <- gbits
return (f s)
where
gbits = do b <- bit
(£, s) <- gbits
return (\s’ -> (xor b s’): £ s’,
xX0or b s)
<|> return (_ -> [],0)

An Extended Form of Shortcut Fusion with Multiple Applications

Conclusions

» We presented shortcut fusion laws for the derivation of
circular and higher-order (monadic) programs.

» The laws are simple and easy to apply in practice.

» The laws developed are generic, in the sense that they can
be defined for a wide class of datatyes and monads.

» Like standard shortcut fusion (fold/build), our laws can also
be implemented in GHC using the RULES pragma (rewrite
rules).

An Extended Form of Shortcut Fusion with Multiple Applications

Summary of results

cons o prod

circular - - —— - —— - ———— » higher order

An Extended Form of Shortcut Fusion with Multiple Applications

Future Work

» Multiple intermediate data structure elimination;
prog = fn f2 . f1l

» Relation with Attribute Grammars.

