An Extended Form of Shortcut Fusion with Multiple Applications

Alberto Pardo
Instituto de Computación
Universidad de la República
Montevideo - Uruguay

(joint work with João Fernandes, João Saraiva and Cecilia Manzino)

Tallinn, March 24, 2009

Modular programs

Separate parts are combined using intermediate data structures.

```
factorial :: Int -> Int
factorial n = product (down n)
product :: [Int] -> Int
product [] = 1
product (a:as) = a * product as
down :: Int -> [Int]
down 0 = []
down n = n : down (n-1)
```


Modular programs

Benefits

- Easier to understand
- Easier to maintain

Modular programs

Benefits

- Easier to understand
- Easier to maintain

Drawbacks

\triangleright Poor performance

Program fusion

$$
\begin{aligned}
& \text { factorial } m=\text { product (down } m \text {) } \\
& \text { product [] }=1 \\
& \text { product (a:as) }=a * \text { product as } \\
& \text { down } 0=[] \\
& \text { down } m=m \text { : down (m-1) }
\end{aligned}
$$

Program fusion

$$
\begin{aligned}
& \text { factorial m = product (down m) } \\
& \text { product [] = } 1 \\
& \text { product (a:as) = a * product as } \\
& \text { down } 0=[] \\
& \text { down } m=m \text { : down (m-1) } \\
& \Downarrow \\
& \text { factorial } 0 \text { = } 1 \\
& \text { factorial m = m * factorial (m-1) }
\end{aligned}
$$

Shortcut fusion for lists

Consumer

$$
\begin{aligned}
& \text { fold :: (b,a -> b -> b) -> [a] -> b } \\
& \text { fold (} \mathrm{n}, \mathrm{c} \text {) [] = } \mathrm{n} \\
& \text { fold (} n, c \text {) (a:as) = c a (fold (n,c) as) }
\end{aligned}
$$

Shortcut fusion for lists

Consumer

$$
\begin{aligned}
& \text { fold :: (b, a }->b->b)->[a]->b \\
& \text { fold }(n, c)[] \quad n \\
& \text { fold }(n, c)(a: a s)=c a(f o l d(n, c) a s)
\end{aligned}
$$

Producer

$$
\begin{aligned}
\text { build : } & (\text { forall b. (b, a }->\mathrm{b}->\mathrm{b}) \rightarrow \mathrm{c} \rightarrow \mathrm{~b}) \\
& ->\mathrm{c}->[\mathrm{a}] \\
\text { build } \mathrm{b} & =\mathrm{g}([],(:))
\end{aligned}
$$

Shortcut fusion for lists

Consumer
fold :: (b,a -> b -> b) -> [a] -> b
fold (n, c) [] $=\mathrm{n}$
fold (n, C) (a:as) = c a (fold (n, c) as)

Producer

$$
\begin{aligned}
\text { build : } & (\text { forall b. (b, a }->\mathrm{b} \rightarrow \mathrm{~b}) \rightarrow \mathrm{c}->\mathrm{b}) \\
& ->\mathrm{c}->[\mathrm{a}] \\
\text { build } \mathrm{b} & =\mathrm{g}([],(:))
\end{aligned}
$$

fold/build

$$
\text { fold }(n, c) \text {. build } g=g(n, c)
$$

Consumer: product

```
product [] = 1
product (a:as) = a * product as
\|
product = fold (1,(*))
```


Producer: down

$$
\begin{aligned}
& \text { down } 0=[] \\
& \text { down } m=m \text { : down (m-1) } \\
& \Downarrow \\
& \text { down = build gdown } \\
& \text { where } \\
& \text { gdown (} n, c \text {) } 0=n \\
& \text { gdown (} n, C \text {) } m=c m(g d o w n(n, C)(m-1))
\end{aligned}
$$

Fusion: factorial

$$
\begin{aligned}
& \text { product }=\text { fold }(1,(*)) \\
& \text { down = build gdown } \\
& \text { where } \\
& \begin{aligned}
& \text { gdown }(n, c) 0=n \\
& \text { gdown }(n, c) m=c m(g d o w n ~n, c) \quad(m-1))
\end{aligned}
\end{aligned}
$$

Fusion: factorial

$$
\begin{aligned}
& \text { product }=\text { fold }(1,(*)) \\
& \text { down = build gdown } \\
& \text { where } \\
& \begin{aligned}
& \text { gdown }(n, c) 0=n \\
& \text { gdown }(n, c) m=c m(g d o w n ~n, c) \quad(m-1))
\end{aligned}
\end{aligned}
$$

factorial
= product . down

Fusion: factorial

$$
\begin{aligned}
& \text { product }=\text { fold }(1,(*)) \\
& \text { down }=\text { build gdown } \\
& \text { where } \\
& \begin{aligned}
& \text { gdown }(n, c) 0=n \\
& \text { gdown }(n, c) m=c m(g d o w n ~n, c) \quad(m-1))
\end{aligned}
\end{aligned}
$$

factorial
= product . down
= fold (1,(*)) . build gdown

Fusion: factorial

$$
\begin{aligned}
& \text { product }=\text { fold }(1,(*)) \\
& \text { down = build gdown } \\
& \text { where } \\
& \begin{aligned}
& \text { gdown }(n, c) 0=n \\
& \text { gdown }(n, c) m=c m(g d o w n ~n, c) \quad(m-1))
\end{aligned}
\end{aligned}
$$

factorial
= product . down
= fold (1,(*)) . build gdown
$=$ gdown (1,(*))

Extended shortcut fusion

Let N be a type constructor with an associated map function mapN :: (a -> b) -> (N a -> N b)

Extended shortcut fusion

Let N be a type constructor with an associated map function
mapN :: (a -> b) -> (N a -> N b)

Producer

$$
\begin{aligned}
\text { buildN : : } & (\text { forall b. (b, a }->\mathrm{b} \rightarrow \mathrm{~b}) \rightarrow \mathrm{c} \rightarrow \mathrm{~N} \text { b) } \\
& ->\mathrm{c} \rightarrow \mathrm{~N}[\mathrm{a}] \\
\text { buildN } \mathrm{g} & =\mathrm{g}([],(:))
\end{aligned}
$$

Extended shortcut fusion

Let N be a type constructor with an associated map function
mapN :: (a -> b) -> (N a -> N b)

Producer

buildN :: (forall b. (b, a -> b -> b) -> c -> N b)
-> c -> N [a]
buildN g = g ([],(:))
extended fold/build

$$
\operatorname{mapN}(f o l d(n, c)) \text {. buildN } g=g(n, C)
$$

Monadic shortcut fusion [Manzino \& Pardo, SBLP'08]

```
type N a = m a
mmap :: Monad m => (a -> b) -> (m a -> m b)
mmap f m = do {a <- m; return (f a)}
```


Monadic shortcut fusion [Manzino \& Pardo, SBLP’08]

```
type N a = m a
mmap :: Monad m => (a -> b) -> (m a -> m b)
mmap f m = do {a<- m; return (f a)}
```


Producer

```
mbuild :: Monad m
    => (forall b. (b,a -> b -> b) -> c -> m b)
    -> c -> m [a]
mbuild g = g ([],(:))
```


Monadic shortcut fusion [Manzino \& Pardo, SBLP'08]

```
type N a = m a
mmap :: Monad m => (a -> b) -> (m a -> m b)
mmap f m = do {a <- m; return (f a)}
```


Producer

```
mbuild :: Monad m
    => (forall b. (b,a -> b -> b) -> c -> m b)
    -> c -> m [a]
mbuild g = g ([],(:))
```

fold/mbuild

$$
\begin{aligned}
& d o \quad\{a s<- \text { mbuild } g x ; ~ r e t u r n ~(f o l d ~(n, C) ~ a s)\} \\
= & g(n, C) x
\end{aligned}
$$

Example: lenLine

```
lenLine = do {cs <- getLine; return(length cs)}
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
getLine :: IO String
getLine = do c <- getChar
    if c == eol
    then return []
    else do cs <- getLine
                                return (c : cs)
```


Example: lenLine (2)

```
lenLine = do {cs <- getLine; return(length xs)}
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
getLine :: IO String
getLine = do c <- getChar
    if c == eol
    then return []
    else do cs <- getLine
                                return (c : cs)
```


Example: lenLine (3)

$$
\begin{aligned}
& \text { length }=\text { fold }(0, h) \text { where } h \mathrm{x} y=1+y \\
& \text { getLine = build gL } \\
& \text { where } \\
& \text { gL (} n, \mathrm{c} \text {) = do c' <- getChar } \\
& \text { if } C^{\prime}==\text { col } \\
& \text { then return } n \\
& \text { else do b <- gL (nyc) } \\
& \text { return (c c' b) }
\end{aligned}
$$

Example: lenLine (4)

$$
\begin{aligned}
& \text { lenLine } \\
& \quad=\text { do }\{c s<- \text { getLine; return(length cs) }\} \\
& \quad=\text { do }\{c s<- \text { mbuild ggL; return(fold }(0, \mathrm{~h}) \mathrm{cS})\} \\
& \quad=g g L \quad(0, \mathrm{~h})
\end{aligned}
$$

Example: lenLine (4)

$$
\begin{aligned}
& \text { lenLine } \\
& \quad=\text { do }\{c s<- \text { getLine; return(length } C S)\} \\
& \quad=\text { do }\{c s<- \text { mbuild ggL; return(fold }(0, h) \text { cs) }\} \\
& \quad=g g L \quad(0, h)
\end{aligned}
$$

lenLine = do c <- getChar
if c == eol

$$
\text { then return } 0
$$

else do n <- lenLine
return (1 + n)

Fusion of effectful functions [Ghani \& Johann 08], [Chitil 00]

effectful fold/mbuild

$$
\begin{aligned}
& \quad \text { do }\{a s<-m b u i l d g x ; \text { fold }(n, c) \text { as }\} \\
& =\text { do }\{m<-g(n, c) x ; m\}
\end{aligned}
$$

where
n : : m b
c :: a -> m b -> m b
fold (n,c) :: [a] -> m b

Circular program derivation [Fernandes \& Pardo \& Saraiva,

 HW'07]$$
\begin{aligned}
& \text { type } N a=(a, z) \\
& \operatorname{mapN}::(a->b)->((a, z)->(b, z)) \\
& \operatorname{mapN} f(a, z)=(f a, z)
\end{aligned}
$$

Circular program derivation [Fernandes \& Pardo \& Saraiva, HW'07]
type N a $=(a, z)$
$\operatorname{mapN}::(\mathrm{a}->\mathrm{b}) \quad->((\mathrm{a}, \mathrm{z})->(\mathrm{b}, \mathrm{z}))$
$\operatorname{map} N f(a, z)=(f a, z)$
Producer
buildp : : (forall b. (b, a $->\mathrm{b} \rightarrow \mathrm{b})$ $->\mathrm{c}->(\mathrm{b}, \mathrm{z})$)

$$
->c->([a], z)
$$

buildp $g=g([],(:))$
fold/buildp
(fold $(n, C) \times i d)$. buildp $g=g(n, c)$

Circular program derivation [Fernandes \& Pardo \& Saraiva,

 HW'07]Consumer

$$
\begin{aligned}
& \text { pfold :: }(z->b, a->b->z->b) \\
& ->([a], z)->b \\
& \text { pfold }(h n, h c)=p L \\
& \text { where } p L([], z)=h n z \\
& p L(a: a s, z)=h c a(p L(a s, z)) z
\end{aligned}
$$

pfold/buildp

$$
\begin{array}{r}
\text { pfold (hn,hc) . build } g \$ \text { i } \\
=\text { let }(v, z)=g(n, c) \text { i } \\
n=h n \boxed{z} \\
c x y=h c x y y z
\end{array}
$$

Example: repmax

```
repmax = replace . copymax
replace :: ([a],a) -> [a]
replace ([], a) = []
replace (x:xs, a) = a : replace (xs, a)
{- lists with nonnegative elements -}
copymax :: Ord a => [a] -> ([a],a)
copymax [] = ([], 0)
copymax (x:xs) = let (ys,m) = copymax xs
                        in (x : ys, max x m)
```


Example: repmax (2)

```
repmax = replace . copymax
replace :: ([a],a) -> [a]
replace ([], a) = []
replace (x:xs, a) = a : replace (xs, a)
{- lists with nonnegative elements -}
copymax :: Ord a => [a] -> ([a],a)
copymax [] = ([], 0)
copymax (x:xs) = let (ys,m) = copymax xs
                        in (x : ys, max x m)
```


Example: repmax (3)

```
repmax = replace . copymax
replace :: ([a],a) -> [a]
replace = pfold (hn,hc)
    where hn _ = []
    hc_l m = m:l
copymax :: Ord a => [a] -> ([a],a)
copymax = buildp g
    where g (n, c) [] = (n, 0)
    g (n, c) (x:xs)
        let (ys,m)=g(n, c) xs
        in (c x ys, max x m)
```


Example: repmax (4)

```
repmax \(x s=z s\)
    where
        \((z s, m)=\) ream xs
    ream [] = ([],0)
    repm \((x: x s)=\) let \(\left(y s, m^{\prime}\right)=\) repm \(x s\)
        in ( \(\quad \mathrm{m}\) : ys, max \(x \mathrm{~m}^{\prime}\) )
```


Monadic circular program derivation [Pardo \& Fernandes \&

 Saraiva, PEPM'09]$$
\begin{aligned}
& \text { type } N a=m(a, z) \\
& \operatorname{mapN} f=\operatorname{mmap}(f \times i d) \\
& \operatorname{mmap} f m=\operatorname{do}\{a<-m ; \text { return }(f a)\}
\end{aligned}
$$

Producer

```
mbuildp :: Monad m =>
    (forall b. (b,a -> b -> b) -> m (b, z))
    -> m ([a],z)
mbuildp g = g ([],(:))
```


Monadic circular program derivation

fold/mbuildp

do $\{(x s, z)<-$ mbuildp gireturn (fold (n, C) $x s, z)\}$
$=g(n, C)$
pfold/mbuildp Let m be a recursive monad.

$$
\begin{aligned}
& \text { do }\{(x s, z)<-m b u i l d p \text { g; } \\
& \text { return (pfold (hn, hc) (xs,z))\} } \\
& = \\
& \text { mdo }\{(v, z)<- \text { let } n=h n \quad z \\
& \text { c } x y=h c x y y \\
& \text { in } g(n, C) \text {; } \\
& \text { return } v\}
\end{aligned}
$$

Example: Parsing

```
newtype Parser a = P (String -> [(a,String)])
instance Monad Parser where
    return a = P (\cs -> [(a,cs)])
    p >= f = ..
pzero :: Parser a
pzero = P (\cs -> [])
    (<|>) :: Parser a -> Parser a -> Parser a
    (P p) <|> (P q)
    = P (\cs -> case p cs ++ q cs of
    [] -> []
    (x:xS) -> [x])
```


Example: Parsing (2)

```
transform = do (bs, s) <- bitstring
    return (applyXor (bs, s))
applyXor :: ([Bit], Bit) -> [Bit]
applyXor ([], _) = []
applyXor (b:bs, s) = xor s b : applyXor (bs, s)
bitstring :: Parser ([Bit], Bit)
bitstring = do b <- bit
                                    (bs, s) <- bitstring
                                    return (b:bs, xor s b)
<|> return ([], 0)
```


Example: Parsing (3)

$$
\begin{aligned}
& \text { transform }=\text { do (bs, s) <- bitstring } \\
& \text { return (applyXor (bs, s)) } \\
& \text { applyXor }=\text { fold (hn,hc) } \\
& \text { where ht _ } \quad=\text { [] } \\
& \text { sc b r s = xor b s : r } \\
& \text { bitstring = mbuildp g } \\
& \text { where } g(n, c) \\
& \text { = do b <- bit } \\
& \text { (bs, s) <- g (n, c) } \\
& \text { return (c b bs,xor b s) } \\
& \text { <|> return (} \mathrm{n}, 0 \text {) }
\end{aligned}
$$

Example: Parsing (4)

$$
\begin{aligned}
& \text { transform } \\
& =\operatorname{mdo}(\mathrm{bs}, \mathrm{~s}) \\
& \text { <- let gbits } \\
& =\text { do b }<- \text { bit } \\
& \text { (bs', s') <- gbits } \\
& \begin{aligned}
& \text { return }(\text { xor } \\
& \text { xor } \mathrm{s}^{\prime} \mathrm{b} \\
&\mathrm{~b})
\end{aligned} \\
& <\mid>\text { return ([],0) } \\
& \text { in gbits } \\
& \text { return bs }
\end{aligned}
$$

pfold as higher-order fold

pfold (hn, hc) :: ([a], z) -> b

pfold as higher-order fold

$$
\begin{aligned}
& \text { pfold (hn, hc) :: ([a], z) -> b } \\
& \text { fold (fn, fc) :: [a] }->(z->b)
\end{aligned}
$$

pfold as higher-order fold

$$
\begin{aligned}
& \text { pfold (hn, hc) :: ([a], z) }->\text { b } \\
& \text { fold }(f n, f c)::[a]->(z->b) \\
& \text { pfold }(h n, h c)=a p p l y .((f o l d(f n, f c)) \times \text { id) }
\end{aligned}
$$

Monadic H.O. program derivation [PEPM'09]

$$
\begin{aligned}
& \text { type } N a=m(a, z) \\
& \operatorname{mapN} f=\operatorname{mmap}(f \times i d) \\
& \operatorname{mmap} f m=\operatorname{do}\{a<-m ; \text { return }(f a)\}
\end{aligned}
$$

Producer

mbuildp :: Monad m =>

$$
\begin{aligned}
& \text { (forall b. (b,a -> b -> b) -> c -> m (b, z)) } \\
& ->\text { c } \rightarrow \text { m }([a], z)
\end{aligned}
$$

mbuildp g = g ([],(:))

Monadic H.O. program derivation

pfold as higher-order fold

pfold (hn, hc) $=$ apply . ((fold (fn, fc)) \times id)
higher-order pfold/mbuildp

```
do {(t,z) <- mbuildp g;
    return (pfold (hn, hc) (t,z))}
=
do {(f,z) <- g (fn, fc));
    return (f z)}
```


Example: Parsing

$$
\begin{aligned}
& \text { applyXor }=\text { pfold (hn,hc) } \\
& \text { where hn _ = [] } \\
& \text { hc b r s = (xor b s) : r } \\
& \downarrow \\
& \begin{aligned}
\text { applyXor }=\text { fold } & (f n, f c) \\
\text { where } f n & =\backslash-->[] \\
f c b r & =\backslash s->(\text { xor } b \mathrm{~s}): r \mathrm{~s}
\end{aligned}
\end{aligned}
$$

Example: Parsing (2)

$$
\begin{aligned}
& \text { transform }=\text { do (bs, s) <- bitstring } \\
& \text { return (applyXor (bs, s)) } \\
& \downarrow \\
& \text { transform }=\text { do }(f, s)<- \text { bits } \\
& \text { return (f s) } \\
& \text { where } \\
& \text { grits }=\text { do } b<- \text { bit } \\
& \text { (frs) <- bits } \\
& \text { return (\s' } \left.->\text { (xor b } s^{\prime}\right): f s^{\prime} \text {, } \\
& \text { xor b s) } \\
& <\mid>\operatorname{return}\left(_{-}->\quad[], 0\right)
\end{aligned}
$$

Conclusions

- We presented shortcut fusion laws for the derivation of circular and higher-order (monadic) programs.
- The laws are simple and easy to apply in practice.
- The laws developed are generic, in the sense that they can be defined for a wide class of datatyes and monads.
- Like standard shortcut fusion (fold/build), our laws can also be implemented in GHC using the RULES pragma (rewrite rules).

Summary of results

Future Work

- Multiple intermediate data structure elimination;

$$
\text { prog }=\mathrm{fn} \text {. . . . f2 . f1 }
$$

- Relation with Attribute Grammars.

