Polynomial Solutions of Recurrence Relations

O. Shkaravska M. van Eekelen A. Tamalet

Digital Security, ICIS
Radboud Universiteit Nijmegen
Tallinn, 9 June 2009

Sponsored by the Netherlands Organisation for Scientific Research (NWO), project Amortized Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

Outline

(1) Motivation: recurrences in program analysis and math.
(2) Our Contribution: multi-step quadratic recurrences for 1 -variable polynomials

Size/Resource Recurrences

$$
\text { tails : } L_{n}(\alpha) \rightarrow L_{f(n)}(\alpha)
$$

tails $\mid=$ match \mid with
$\mathrm{Nil} \Rightarrow \mathrm{Nil}$
Cons(hd, tl) $\Rightarrow \mathrm{I}++$ tails(tl)

$$
\begin{array}{ll}
& \vdash f(0)=0 \\
n \geq 1 & \vdash f(n)=n+f(n-1)
\end{array}
$$

Linear Recurrences for 1-variable Functions

$$
\begin{aligned}
& \vdash f(0)=0 \\
n \geq 1 & \vdash f(n)=n+f(n-1)
\end{aligned}
$$

Homogenisation by symbolic differentiation:
$f^{\prime}(n):=f(n)-f(n-1)$,
$f^{\prime}(n)=1+f^{\prime}(n-1), f^{\prime}(1)=1-0=1$
$f^{\prime \prime}(n):=f^{\prime}(n)-f^{\prime}(n-1)$
$f^{\prime \prime}(n)=f^{\prime \prime}(n-1), f^{\prime \prime}(2)=f^{\prime}(2)-f^{\prime}(1)=1$,
$f^{\prime \prime}(n)=1$
$f^{\prime \prime \prime}(n)=0$. If the solution is a polynomial, then the degree is 2 :
$f(n)=a n^{2}+b n+c$
$f(0)=0, f(1)=1, f(2)=3 \Longrightarrow c=0, a=b=\frac{1}{2}$

Non-linear recurrences: math. challenge

No general theory, as for linear recurrences. We consider polynomial solutions for such recurrences.

$$
\begin{cases}p\left(n_{1}, 0\right) & =4 n_{1}^{2} \\ p\left(0, n_{2}\right) & =4 n_{2}^{2} \\ p\left(n_{1}, n_{2}\right) & =\left(p\left(n_{1}-1, n_{2}\right)+n_{1}-\left(p\left(n_{1}, n_{2}-1\right)+n_{2}\right)\right)^{2} \\ & +17 n_{1} n_{2}\end{cases}
$$

We want to know such D, that either $\operatorname{degree}(p):=z \leq D$ or D is not a polynomial at all.

If such D is known then we can use MUC or, as above (better!), fit a polynomial by solving SLE and check then if it suits the recurrence.

In the example we take $D=2$ and obtain
$p\left(n_{1}, n_{2}\right)=4 n_{1}^{2}+4 n_{2}^{2}+9 n_{1} n_{2}$

Multi-step Quadratic Recurrence

t-step Quadratic Recurrence

$$
\begin{aligned}
p(n)= & \alpha_{11} p^{2}\left(n-r_{1}\right)+ \\
& \alpha_{12} p\left(n-r_{1}\right) p\left(n-r_{2}\right)+\alpha_{22} p^{2}\left(n-r_{2}\right)+ \\
& \alpha_{13} p\left(n-r_{1}\right) p\left(n-r_{3}\right)+\alpha_{33} p^{2}\left(n-r_{3}\right)+ \\
& \ldots+ \\
& \alpha_{t-1, t} p\left(n-r_{t-1}\right) p\left(n-r_{t}\right)+\alpha_{t t} p^{2}\left(n-r_{t}\right)+ \\
& L\left(p\left(n-r_{1}\right), \ldots, p\left(n-r_{t}\right)\right)
\end{aligned}
$$

Our Aim

Find D such that $\operatorname{deg}(p) \leq D$

Technicalities: gather coefficients at n^{t} in the r.h.s.

$$
\begin{array}{ll}
p(n) & =a_{z} n^{z}+\ldots+a_{1} n+a_{0} \\
p(n-r) & =a_{z}(n-r)^{z}+\ldots+a_{1}(n-r)+a_{0} \\
p\left(n-r_{k}\right) p\left(n-r_{l}\right) & =\sum_{0 \leq i, j \leq z} a_{i} a_{j}\left(n-r_{k}\right)^{i}\left(n-r_{l}\right)^{j} \\
p(n)=\sum_{1 \leq k \leq I \leq t} \alpha_{k l} \sum_{0 \leq i, j \leq z} a_{i} a_{j} \\
& \left(K_{k, l}^{i, j=0} n^{i+j}+K_{k, l}^{i, j,-1} n^{i+j-1}+\ldots+K_{k, l}^{i, j,-(i+j)}\right)
\end{array}
$$

where

$$
K_{k, l}^{i, j,-0}=1
$$

$$
K_{k, l}^{i, j,-m}=\sum_{\gamma=0}^{m} C_{i}^{\gamma} C_{j}^{m-\gamma}\left(-r_{k}\right)^{\gamma}\left(-r_{l}\right)^{m-\gamma}
$$

Cancellation equations for multi-step recurrence

t	The coefficient at n^{t}	Cancellation
$2 z$	$v_{0}=a_{z} a_{z} \Sigma_{1 \leq k \leq 1 \leq t} K_{k, l}^{z, z,}{ }^{-0} \alpha_{k l}$	$\begin{aligned} & 2 z>z \Rightarrow \\ & v_{0}=0 \end{aligned}$
$2 z-1$	$\begin{aligned} v_{1}= & a_{z} a_{z} \Sigma_{1 \leq k \leq 1 \leq t} K_{k, l}^{z, z,-1} \alpha_{k l}+ \\ & a_{z-1} a_{z} \Sigma_{1 \leq k \leq 1 \leq t} K_{k, 1}^{z-1, z,-0} \alpha_{k l}+ \\ & a_{z} a_{z-1} \Sigma_{1 \leq k \leq 1 \leq t} K_{k, l}^{z, z-1,-{ }^{2}} \alpha_{k l} \end{aligned}$	$\begin{aligned} & 2 z-1>z \Rightarrow \\ & v_{1}=0 \end{aligned}$
	\ldots	
$2 z-m$	$\begin{aligned} & v_{m}=\sum_{i, j} 0 \leq i+j \leq m \\ & a_{z-i} a_{z-j} \Sigma_{1 \leq k \leq I \leq t} K_{k, l}^{z-i, z-j,-(m-(i+j))} \alpha_{k l} \end{aligned}$	$\begin{aligned} & 2 z-m>z \Rightarrow \\ & v_{m}=0 \end{aligned}$

Cancellation conditions form a homogeneous linear system w.r.t $\alpha_{k l}$

A homogeneous linear system: $A \bar{x}=0$

- Folklore: if the amount of equations is equal to the amount of variables then the only solution is zero: $\bar{x}=\overline{0}$,
- in fact: if $\operatorname{rank}(A)=$ "the amount of variables", then $\bar{x}=\overline{0}$.

We note:

- the first $m+1$ cancellation conditions form a homogeneous system w.r.t. $\alpha_{k l}: v_{0}=0, v_{1}=0, \ldots v_{m}$;
- $z>m$ implies $2 z-m>z$ then all the $m+1$ cancellation conditions must hold simultaneously, i.e. they form this system of $m+1$ equations; our coefficients $\alpha_{k l}$ form exactly its solution;

Cancellation conditions form a homogeneous linear system w.r.t $\alpha_{k l}$

We note (continue):

- Let $z>\#\left\{\alpha_{k l}\right\}-1$ ("the amount of coefficients" $\alpha_{k l}-1$). Then we have a homogeneous system where the amount of equations, $\#\left\{\alpha_{k l}\right\}$ is equal to the amount of variables. Folklore: "it implies" that the system has only zero solution, i.e. all the coefficients $\alpha_{k l}$ are zero and the recurrence is linear.
- The real problem: we have to show that the RANK of the matrix of the system $v_{m}=0$, where $0 \leq m \leq \#\left\{\alpha_{k l}\right\}-1$, is equal to $\#\left\{\alpha_{k l}\right\}$; It is difficult: its determinant after $m \geq 4$ is really weird, with the unknown coefficients a_{i} (at the moment I do not know if you can get rid of them).

Cancellation conditions form a homogeneous linear system w.r.t $\alpha_{k l}$

What we do know:

- for $1 \leq m \leq 3$ the coefficients for m are expressible via the coefficients for $m-1$,
- using this, we show that for $m \leq 3$ the unknown coefficients a_{i} may be omitted,
- the determinant for the two-step recurrence over $p\left(n-r_{1}\right)$ and $p\left(n-r_{2}\right)$ with $m=2$ is non-zero, that is the homogeneous system over $\alpha_{11}, \alpha_{12}, \alpha_{22}$ has a solution and it is zero, i.e. the recurrence is linear.

Cancellation conditions form a homogeneous linear system w.r.t $\alpha_{k l}$

Theorem 1

If a quadratic two-step recurrence has a polynomial solution then its degree $z \leq 2$

If $z>2$ then $2 z-2>z$ and the cancellation conditions for $m=0,1,2$ must hold. Moreover, the determinant of the matrix of the corresponding linear system is non-zero.
Therefore, all the coefficients $\alpha_{11}, \alpha_{12}, \alpha_{22}$ are zero and the recurrence is linear.

Idea: coefficients at $n^{2 z-m}$ are polynomials on z

$\#\left\{\alpha_{k}\right\} \geq 4$: reduce to a system with simpler determinants.
We want to obtain the presentation
$v_{m}(z)=A_{m m} z^{m}+\ldots+A_{m 0}=0$, from which follows:
\int either $A_{m m} \neq 0 \Rightarrow z \leq\left|\frac{A_{0 m}}{A_{m m}}\right|$
or $A_{m m}=0 \Rightarrow$ we have a simpler equation instead of $v_{m}=0$

Computing $A_{m i}$ for $v(z)=A_{m m} z^{m}+\ldots+A_{m 0}$

Lemma 1

The coefficient at the highest degree of z in $v_{m}(z)$ is $A_{m m}=\frac{\left(-r_{k}-r_{l}\right)^{m}}{m!} a_{z} a_{z}$

To our aim: find D, such that $z \leq D$

Theorem 1

$z<\#\left(\alpha_{k l}\right)$ or
$z \leq \frac{\left|A_{d_{0} 0}\right|}{\left|A_{d_{0} d_{0}}\right|}$, where $d_{0}=\min _{1 \leq d \leq \#\left(\alpha_{k l}\right)}\left\{A_{d d} \neq 0\right\}$.
Suppose that $z \geq \#\left(\alpha_{k l}\right)$. Then all $v_{m}=0$, where $0 \leq m \leq \#\left(\alpha_{k l}\right)$, hold.

Suppose that d with the property $A_{d d} \neq 0$ does not exist, that is for all $1 \leq m \leq \#\left(\alpha_{k l}\right)$ we have $A_{m m}=0$.

To our aim: find D, such that $z \leq D$

From what follows that $\sum_{1 \leq k \leq 1 \leq t}\left(r_{k}+r_{l}\right)^{m} \alpha_{k l}=0$ for $0 \leq m \leq \#\left(\alpha_{k l}\right)$.

The determinant of this system is Vandermonde determinant.
If all the sums $r_{k}+r_{l}$ are different, then the determinant is non-zero. Therefore, the system has only the zero solution, which means that the recurrence is linear.

But this is often not the case: e.g. $\alpha_{13} p(n-1) p(n-3)$ and $\alpha_{22} p(n-2) p(n-2)$.

To our aim: find D, such that $z \leq D$

Def.: $\left\{R_{1}, \ldots, R_{s}\right\}=\left\{R \mid \exists r_{k} r_{1} \cdot R=r_{k}+r_{l}\right\}$
$\sum_{i=1}^{s} R_{i}^{m} \beta_{i}=0$ for $0 \leq m \leq \#\left(\alpha_{k l}\right)$.
$\beta_{i}=\Sigma_{r_{k}+r_{i}=R_{i}} \alpha_{k l}=0$
$\left(\#\left\{\alpha_{k}\right\}+1\right)-1+s$ equations over $s+\#\left\{\alpha_{k l}\right\}$ variables.

Future Work

- continue with multi-step quadratic recurrences, $t \geq 3$.
- extend to degree $d \geq 2$ recurrences
- extend to recurrences over multivariate polynomial solutions

