Polynomial Solutions of Recurrence Relations

O. Shkaravska M. van Eekelen A. Tamalet

Digital Security, ICIS Radboud Universiteit Nijmegen

Tallinn, 9 June 2009

Sponsored by the Netherlands Organisation for Scientific Research (NWO), project Amortized Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

ヘロト ヘアト ヘビト ヘビト

Motivation: recurrences in program analysis and math.

Our Contribution: multi-step quadratic recurrences for 1-variable polynomials

ヘロト ヘアト ヘヨト ヘ

Size/Resource Recurrences

tails :
$$L_n(\alpha) \to L_{f(n)}(\alpha)$$

$$\begin{array}{ll} \mbox{tails I} = & \mbox{match I with} \\ & \mbox{Nil} \Rightarrow \mbox{Nil} \\ & \mbox{Cons(hd, tl)} \Rightarrow \mbox{I} + + \mbox{tails(tl)} \end{array}$$

$$\begin{array}{l} \vdash f(0) = 0\\ n \geq 1 \quad \vdash f(n) = n + f(n-1) \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Linear Recurrences for 1-variable Functions

$$\begin{array}{l} \vdash f(0) = 0\\ n \geq 1 \quad \vdash f(n) = n + f(n-1) \end{array}$$

Homogenisation by symbolic differentiation:

$$f'(n) := f(n) - f(n-1),$$

$$f'(n) = 1 + f'(n-1), f'(1) = 1 - 0 = 1$$

$$f''(n) := f'(n) - f'(n-1)$$

$$f''(n) = f''(n-1), f''(2) = f'(2) - f'(1) = 1,$$

 $f''(n) = 1$

f'''(n) = 0. If the solution is a polynomial, then the degree is 2: $f(n) = an^2 + bn + c$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$$f(0) = 0, f(1) = 1, f(2) = 3 \Longrightarrow c = 0, a = b = \frac{1}{2}$$

Non-linear recurrences: math. challenge

No general theory, as for linear recurrences. We consider polynomial solutions for such recurrences.

$$\begin{pmatrix} p(n_1,0) &= 4n_1^2 \\ p(0,n_2) &= 4n_2^2 \\ p(n_1,n_2) &= (p(n_1-1,n_2) + n_1 - (p(n_1,n_2-1) + n_2))^2 \\ &+ 17n_1n_2 \end{pmatrix}$$

We want to know such *D*, that either $degree(p) := z \le D$ or *D* is not a polynomial at all.

If such *D* is known then we can use MUC or, as above (better!), fit a polynomial by solving SLE and check then if it suits the recurrence.

イロト イポト イヨト イヨト

In the example we take D = 2 and obtain $p(n_1, n_2) = 4n_1^2 + 4n_2^2 + 9n_1n_2$

Multi-step Quadratic Recurrence

t-step Quadratic Recurrence

$$p(n) = \alpha_{11} p^{2}(n-r_{1}) + \alpha_{12} p(n-r_{1}) p(n-r_{2}) + \alpha_{22} p^{2}(n-r_{2}) + \alpha_{13} p(n-r_{1}) p(n-r_{3}) + \alpha_{33} p^{2}(n-r_{3}) + \dots + \alpha_{t-1, t} p(n-r_{t-1}) p(n-r_{t}) + \alpha_{tt} p^{2}(n-r_{t}) + L\Big(p(n-r_{1}), \dots, p(n-r_{t})\Big)$$

Our Aim

Find *D* such that $deg(p) \leq D$

ヘロン 人間 とくほ とくほ とう

Technicalities: gather coefficients at n^t in the r.h.s.

$$p(n) = a_{z}n^{z} + \dots + a_{1}n + a_{0}$$

$$p(n-r) = a_{z}(n-r)^{z} + \dots + a_{1}(n-r) + a_{0}$$

$$p(n-r_{k})p(n-r_{l}) = \sum_{0 \le i, j \le z} a_{i}a_{j}(n-r_{k})^{i}(n-r_{l})^{j}$$

$$p(n) = \sum_{1 \le k \le l \le t} \alpha_{kl} \sum_{0 \le i, j \le z} a_{i}a_{j}$$

$$(K_{k,l}^{i,j,-0}n^{i+j} + K_{k,l}^{i,j,-1}n^{i+j-1} + \dots + K_{k,l}^{i,j,-(i+j)})$$
where

$$K_{k,l}^{i,j,-0} = 1$$

$$\dots$$

$$K_{k,l}^{i,j,-m} = \sum_{\gamma=0}^{m} C_{i}^{\gamma}C_{j}^{m-\gamma}(-r_{k})^{\gamma}(-r_{l})^{m-\gamma}$$

ヘロン 人間 とくほ とくほ とう

Cancellation equations for multi-step recurrence

t	The coefficient at <i>n</i> ^t	Cancellation
2 <i>z</i>	$v_0 = a_z a_z \sum_{1 \le k \le l \le t} K_{k,l}^{z,z,-0} \alpha_{kl}$	$2z > z \Rightarrow v_0 = 0$
2 <i>z</i> – 1	$v_{1} = a_{z}a_{z}\Sigma_{1 \le k \le l \le t}K_{k,l}^{z,z,-1}\alpha_{kl} + a_{z-1}a_{z}\Sigma_{1 \le k \le l \le t}K_{k,l}^{z-1,z,-0}\alpha_{kl} + a_{z}a_{z-1}\Sigma_{1 \le k \le l \le t}K_{k,l}^{z,z-1,-0}\alpha_{kl}$	$2z - 1 > z \Rightarrow v_1 = 0$
2 <i>z</i> – <i>m</i>	$v_m = \sum_{i,j \ 0 \le i+j \le m} a_{z-i} a_{z-j} \sum_{1 \le k \le l \le l} K_{k,l}^{z-i, z-j, -(m-(i+j))} \alpha_{kl}$	$2z - m > z \Rightarrow$ $v_m = 0$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Cancellation conditions form a homogeneous linear system w.r.t α_{kl}

A homogeneous linear system: $A\bar{x} = 0$

- Folklore: if the amount of equations is equal to the amount of variables then the only solution is zero: $\bar{x} = \bar{0}$,
- in fact: if rank(A) = "the amount of variables", then $\bar{x} = \bar{0}$.

We note:

- the first m + 1 cancellation conditions form a homogeneous system w.r.t. α_{kl}: v₀ = 0, v₁ = 0, ... v_m;
- z > m implies 2z m > z then all the m + 1 cancellation conditions must hold simultaneously, i.e. they form this system of m + 1 equations;

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

our coefficients α_{kl} form exactly its solution;

Cancellation conditions form a homogeneous linear system w.r.t α_{kl}

We note (continue):

- Let $z > \#\{\alpha_{kl}\} 1$ ("the amount of coefficients" $\alpha_{kl} 1$). Then we have a homogeneous system where the amount of equations, $\#\{\alpha_{kl}\}$ is equal to the amount of variables. Folklore: "it implies" that the system has only zero solution, i.e. all the coefficients α_{kl} are zero and the recurrence is linear.
- The real problem: we have to show that the RANK of the matrix of the system v_m = 0, where 0 ≤ m ≤ #{α_{kl}} 1, is equal to #{α_{kl}};

It is difficult: its determinant after $m \ge 4$ is really weird, with the unknown coefficients a_i (at the moment I do not know if you can get rid of them).

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Cancellation conditions form a homogeneous linear system w.r.t α_{kl}

What we do know:

- for 1 ≤ m ≤ 3 the coefficients for m are expressible via the coefficients for m − 1,
- using this, we show that for *m* ≤ 3 the unknown coefficients *a_i* may be omitted,
- the determinant for the two-step recurrence over $p(n r_1)$ and $p(n - r_2)$ with m = 2 is non-zero, that is the homogeneous system over $\alpha_{11}, \alpha_{12}, \alpha_{22}$ has a solution and it is zero, i.e. the recurrence is linear.

<ロ> (四) (四) (三) (三) (三)

Cancellation conditions form a homogeneous linear system w.r.t α_{kl}

Theorem 1

If a quadratic two-step recurrence has a polynomial solution then its degree $z \leq 2$

If z > 2 then 2z - 2 > z and the cancellation conditions for m = 0, 1, 2 must hold. Moreover, the determinant of the matrix of the corresponding linear system is non-zero. Therefore, all the coefficients $\alpha_{11}, \alpha_{12}, \alpha_{22}$ are zero and the recurrence is linear.

ヘロト ヘアト ヘビト ヘビト

Idea: coefficients at n^{2z-m} are polynomials on z

 $\#\{\alpha_{kl}\} \ge 4$: reduce to a system with simpler determinants.

We want to obtain the presentation $v_m(z) = A_{mm}z^m + \ldots + A_{m0} = 0$, from which follows: $\begin{cases}
either A_{mm} \neq 0 \Rightarrow z \leq \left|\frac{A_{0m}}{A_{mm}}\right| \\
or A_{mm} = 0 \Rightarrow we have a simpler equation instead of \\
v_m = 0
\end{cases}$

イロト イポト イヨト イヨト 三日

Computing A_{mi} for $v(z) = A_{mm}z^m + \ldots + A_{m0}$

Lemma 1

The coefficient at the highest degree of z in $v_m(z)$ is $A_{mm} = \frac{(-r_k - r_l)^m}{m!} a_z a_z$

Shkaravska, van Eekelen, Tamalet Polynomial Solutions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

To our aim: find *D*, such that $z \leq D$

Theorem 1

$$egin{aligned} & z < \#(lpha_{kl}) ext{ or } \ & z \leq rac{|m{A}_{d_00}|}{|m{A}_{d_0d_0}|}, ext{ where } m{d}_0 = \min_{1 \leq d \leq \#(lpha_{kl})} \{m{A}_{dd}
eq 0\} \end{aligned}$$

Suppose that $z \ge \#(\alpha_{kl})$. Then all $v_m = 0$, where $0 \le m \le \#(\alpha_{kl})$, hold.

Suppose that *d* with the property $A_{dd} \neq 0$ does not exist, that is for all $1 \leq m \leq \#(\alpha_{kl})$ we have $A_{mm} = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

To our aim: find *D*, such that $z \leq D$

From what follows that $\sum_{1 \le k \le l \le t} (r_k + r_l)^m \alpha_{kl} = 0$ for $0 \le m \le \#(\alpha_{kl})$.

The determinant of this system is Vandermonde determinant.

If all the sums $r_k + r_l$ are different, then the determinant is non-zero. Therefore, the system has only the zero solution, which means that the recurrence is linear.

But this is often not the case: e.g. $\alpha_{13}p(n-1)p(n-3)$ and $\alpha_{22}p(n-2)p(n-2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

To our aim: find *D*, such that $z \leq D$

Def.:
$$\{R_1, \ldots, R_s\} = \{R | \exists r_k r_l, R = r_k + r_l\}$$

$$\sum_{i=1}^s R_i^m \beta_i = 0 \text{ for } 0 \le m \le \#(\alpha_{kl}).$$

$$\beta_i = \sum_{r_k + r_l = R_l} \alpha_{kl} = 0$$

$$(\#\{\alpha_{kl}\} + 1) - 1 + s \text{ equations over } s + \#\{\alpha_{kl}\} \text{ variables.}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Future Work

- continue with multi-step quadratic recurrences, $t \ge 3$.
- extend to degree *d* ≥ 2 recurrences
- extend to recurrences over multivariate polynomial solutions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの