
Implementing Domain Specific
Languages using Dependent Types

and Partial Evaluation
Edwin Brady

eb@cs.st-andrews.ac.uk

University of St Andrews

EE-PigWeek, January 7th 2010

EE-PigWeek, January 7th 2010 – p.1/27

Introduction

This talk is about applications of dependently typed
programming. It will cover:

� Briefly, an overview of functional programming with
dependent types, using the language Idris.

� Domain Specific Language (DSL) implementation.
� A type safe interpreter
� Code generation via specialisation
� Network protocols as DSLs
� Performance data

EE-PigWeek, January 7th 2010 – p.2/27

Idris

Idris is an experimental purely functional language with
dependent types
(http://www.s.st-and.a.uk/~eb/Idris).

� Compiled, via C, with reasonable performance
(more on this later).

� Loosely based on Haskell, similarities with Agda,
Epigram.

� Some features:
� Primitive types (Int, String, Char, . . .)
� Interaction with the outside world via a C FFI.
� Integration with a theorem prover, Ivor.

EE-PigWeek, January 7th 2010 – p.3/27

http://www.cs.st-and.ac.uk/~eb/Idris

Why Idris?

Why Idris rather than Agda, Coq, Epigram, . . . ?

� Useful to have freedom to experiment with high level
language features.

� I want to see what we can achieve in practice, so:
� Need integration with the “outside world” —

foreign functions, I/O.
� Programs need to run sufficiently quickly.

EE-PigWeek, January 7th 2010 – p.4/27

Why Idris?

Why Idris rather than Agda, Coq, Epigram, . . . ?

� Useful to have freedom to experiment with high level
language features.

� I want to see what we can achieve in practice, so:
� Need integration with the “outside world” —

foreign functions, I/O.
� Programs need to run sufficiently quickly.
� (whisper: sometimes, in the short term, it’s

useful to cheat the type system)

EE-PigWeek, January 7th 2010 – p.4/27

Why Idris?

Why Idris rather than Agda, Coq, Epigram, . . . ?

� Useful to have freedom to experiment with high level
language features.

� I want to see what we can achieve in practice, so:
� Need integration with the “outside world” —

foreign functions, I/O.
� Programs need to run sufficiently quickly.
� (whisper: sometimes, in the short term, it’s

useful to cheat the type system)

� Making a programming language is fun. . .

EE-PigWeek, January 7th 2010 – p.4/27

Dependent Types in Idris

Dependent types allow types to be parameterised by
values, giving a more precise description of data.
Some data types in Idris:data Nat = O | S Nat;infixr 5 :: ; -- Define an infix operatordata Vet : Set -> Nat -> Set where -- List with sizeVNil : Vet a O| (::) : a -> Vet a k -> Vet a (S k);
We say that Vet is parameterised by the element type
and indexed by its length.

EE-PigWeek, January 7th 2010 – p.5/27

Functions

The type of a function over vectors describes invariants
of the input/output lengths.

e.g. the type of vAdd expresses that the output length is
the same as the input length:vAdd : Vet Int n -> Vet Int n -> Vet Int n;vAdd VNil VNil = VNil;vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys;
The type checker works out the type of n implicitly, from
the type of Vet.

EE-PigWeek, January 7th 2010 – p.6/27

Input and Output

I/O in Idris works in a similar way to Haskell. e.g. readVe
reads user input and adds to an accumulator:readVe : Vet Int n -> IO (p ** Vet Int p);readVe xs = do { putStr "Number: ";val <- getInt;if val == -1 then return << _, xs >>else (readVe (val :: xs));};
The program returns a dependent pair, which pairs a
value with a predicate on that value.

EE-PigWeek, January 7th 2010 – p.7/27

The with Rule

The with rule allows dependent pattern matching on
intermediate values:vfilter : (a -> Bool) -> Vet a n -> (p ** Vet a p);vfilter f VNil = << _, VNil >>;vfilter f (x :: xs) with (f x, vfilter xs f) {| (True, << _, xs' >>) = << _, x :: xs' >>;| (False, << _, xs' >>) = << _, xs' >>;}
The underscore _ means either match anything (on the
left of a clause) or infer a value (on the right).

EE-PigWeek, January 7th 2010 – p.8/27

Libraries

Libraries can be imported via inlude "lib.idr". All
programs automatically import prelude.idr which
includes, among other things:

� Primitive types Int, String and Char, plus Nat, Bool
� Tuples, dependent pairs.

� Fin, the finite sets.
� List, Vet and related functions.
� Maybe and Either
� The IO monad, and foreign function interface.

EE-PigWeek, January 7th 2010 – p.9/27

A Type Safe Interpreter

A common introductory example to dependent types is
the type safe interpreter. The pattern is:

� Define a data type which represents the language
and its typing rules.

� Write an interpreter function which evaluates this
data type directly.

[demo: interp.idr]

EE-PigWeek, January 7th 2010 – p.10/27

A Type Safe Interpreter

Notice that when we run the interpreter on functions
without arguments, we get a translation into Idris:Idris> interp Empty test\ x : Int . \ x0 : Int . x + x0Idris> interp Empty double\ x : Int . x+x
Idris implements %spe and %freeze annotations which
control the amount of evaluation at compile time.

[demo: interp.idr again]

EE-PigWeek, January 7th 2010 – p.11/27

A Type Safe Interpreter

We have partially evaluated these programs. If we can
do this reliably, and have reasonable control over, e.g.,
inlining, then we have a good recipe for efficient Domain
Specific Language (DSL) implementation:

� Define the language data type

� Write the interpreter

� Specialise the interpreter w.r.t. real programs

If we trust the host language’s type checker and code
generator — admittedly we still have to prove this, but
only once! — then we can trust the DSL implementation.

EE-PigWeek, January 7th 2010 – p.12/27

Resource Usage Verification

We have applied the type safe interpreter approach to a
family of domain specific languages with resource usage
properties, in their type:

� File handling

� Memory usage

� Concurrency (locks)

� Network protocol state

As an example, I will outline the construction of a DSL for
a simple network transport protocol.

EE-PigWeek, January 7th 2010 – p.13/27

Example — Network Protocols

Protocol correctness can be verified by model-checking a
finite-state machine. However:

� There may be a large number of states and
transitions.

� The model is needed in addition to the
implementation.

Model-checking is therefore not self-contained. It can
verify a protocol, but not its implementation.

EE-PigWeek, January 7th 2010 – p.14/27

Example — Network Protocols

In our approach we construct a self-contained
domain-specific framework in a dependently-typed
language.

� We can express correctness properties in the
implementation itself.

� We can express the precise form of data and ensure
it is validated.

� We aim for Correctness By Construction.

EE-PigWeek, January 7th 2010 – p.15/27

ARQ

Our simple transport protocol:

� Automatic Repeat Request (ARQ)

� Separate sender and receiver

� State
� Session state (status of connection)
� Transmission state (status of transmitted data)

EE-PigWeek, January 7th 2010 – p.16/27

Session State

EE-PigWeek, January 7th 2010 – p.17/27

Transmission State

EE-PigWeek, January 7th 2010 – p.18/27

Session Management

� START — initiate a session
� START_RECV_ACK

— wait for the receiver to be ready

� END — close a session
� END_RECV_ACK

— wait for the receiver to close

EE-PigWeek, January 7th 2010 – p.19/27

Session Management

� START — initiate a session
� START_RECV_ACK

— wait for the receiver to be ready

� END — close a session
� END_RECV_ACK

— wait for the receiver to close

When are these operations valid? What is their effect on
the state? How do we apply them correctly?

EE-PigWeek, January 7th 2010 – p.19/27

Session Management

We would like to express contraints on these operations, describing
when they are valid, e.g.:

Command Precondition PostconditionSTART CLOSED OPENINGSTART_RECV_ACK OPENING OPEN (if ACK received)OPENING (if nothing received)END OPEN CLOSINGEND_RECV_ACK CLOSING CLOSED (if ACK received)CLOSED (if nothing received)

EE-PigWeek, January 7th 2010 – p.20/27

Sessions, Dependently Typed

How do we express our session state machine?

� Make each transition an operation in a DSL.

� Define the abstract syntax of the DSL language as a
dependent type.

� Implement an interpreter for the abstract syntax.

� Specialise the interpreter for the ARQ
implementation.

This is the recipe we followed for the well typed
interpreter . . .

EE-PigWeek, January 7th 2010 – p.21/27

Session State, FormallyState carries the session state, i.e. states in the Finite
State Machine, plus additional data:data State = CLOSED| OPEN PState -- transmission state| CLOSING| OPENINGPState carries the transmission state. An open
connection is either waiting for an ACK or ready to send
the next packet.data PState = Waiting Seq -- seq. no.| Ready Seq -- seq. no.

EE-PigWeek, January 7th 2010 – p.22/27

Sessions, FormallyARQLang is a data type defining the abstract syntax of our
DSL, encoding state transitions in the type:data ARQLang : State -> State -> Set -> Set whereSTART : ARQLang CLOSED OPENING ()| START_RECV_ACK: (if_ok: ARQLang (OPEN (Ready First)) B Ty) ->(if_fail: ARQLang OPENING B Ty) ->(ARQLang OPENING B Ty)...
[demo: ARQdsl.idr]

EE-PigWeek, January 7th 2010 – p.23/27

Results

We have implemented a number of examples using the
DSL approach, and compared the performance of the
interpreted and specialised versions with equivalent
programs in C and Java.

� File handling
� Copying a file
� Processing file contents (e.g. reading, sorting,

writing)

� Functional language implementation
� Well-typed interpreter extended with lists

EE-PigWeek, January 7th 2010 – p.24/27

Results

Run time, in seconds of user time, for a variety of DSL
programs:

Program Spec Gen Java Cfat1 0.017 8.598 0.081 0.007fat2 1.650 877.2 1.937 0.653sumlist 3.181 1148.0 4.413 0.346opy 0.589 1.974 1.770 0.564opy_dynami 0.507 1.763 1.673 0.512opy_store 1.705 7.650 3.324 1.159sort_file 5.205 7.510 2.610 1.728ARQ 0.149 0.240 — —

EE-PigWeek, January 7th 2010 – p.25/27

Conclusion

Dependent types allow us to implement embedded DSLs
with rich specification/verification. Also:

� We need an evaluator for type checking anyway, so
why not use it for specialisation?
� Related to MetaOCaml/Template Haskell, but

free!
� If (when?) we trust the Idris type checker and

code generator, we can trust our DSL.
� DSL programs will be as efficient as we can

make Idris (i.e. no interpreter overhead).

� Lots of interesting (resource related) problems fit
into this framework.

EE-PigWeek, January 7th 2010 – p.26/27

Further Reading

� “Scrapping your Inefficient Engine: using Partial Evaluation to
Improve Domain-Specific Language Implementation”
— E. Brady and K. Hammond,

submitted 2009.

� “Domain Specific Languages (DSLs) for Network Protocols”
— S. Bhatti, E. Brady, K. Hammond and J. McKinna,

In Next Generation Network Architecture 2009.

� http://www.s.st-andrews.a.uk/~eb/haking/ARQdsl.html

— ARQ DSL implementation

� http://www.s.st-andrews.a.uk/~eb/Idris

� http://www.s.st-andrews.a.uk/~eb/Idris/tutorial.html

EE-PigWeek, January 7th 2010 – p.27/27

http://www.cs.st-andrews.ac.uk/~eb/hacking/ARQdsl.html
http://www.cs.st-andrews.ac.uk/~eb/Idris
http://www.cs.st-andrews.ac.uk/~eb/Idris/tutorial.html

	Introduction
	Idris
	Why Idris?
	Dependent Types in Idris
	Functions
	Input and Output
	The 	SY {with} Rule
	Libraries
	A Type Safe Interpreter
	A Type Safe Interpreter
	A Type Safe Interpreter
	Resource Usage Verification
	Example --- Network Protocols
	Example --- Network Protocols
	ARQ
	Session State
	Transmission State
	Session Management
	Session Management
	Sessions, Dependently Typed
	Session State, Formally
	Sessions, Formally
	Results
	Results
	Conclusion
	Further Reading

