Implementing Domain Specific
Languages using Dependent Types
and Partial Evaluation

Edwin Brady

eb@cs.st-andrews.ac.uk

University of St Andrews
EE-PigWeek, January 7th 2010

EE-PigWeek, January 7th 2010 — p.1/2:

Introduction

This talk is about applications of dependently typed
programming. It will cover:

B Briefly, an overview of functional programming with
dependent types, using the language Idris.
B Domain Specific Language (DSL) implementation.
¢ A type safe interpreter
¢ Code generation via specialisation
¢ Network protocols as DSLs
¢ Performance data

EE-PigWeek, January 7th 2010 — p.2/2:

ldris
N

Idris Iis an experimental purely functional language with
dependent types

(http://www.cs.st-and.ac.uk/"eb/Idris).

B Compiled, via C, with reasonable performance
(more on this later).

B |Loosely based on Haskell, similarities with Agda,
Epigram.
B Some features:
¢ Primitive types (Int, String, Char, ...)
¢ Interaction with the outside world via a C FFl.
¢ Integration with a theorem prover, Ivor.

EE-PigWeek, January 7th 2010 — p.3/2.

http://www.cs.st-and.ac.uk/~eb/Idris

Why Idris?
— 1]
Why Idris rather than Agda, Coq, Epigram, ...?

B Useful to have freedom to experiment with high level
language features.
B | want to see what we can achieve Iin practice, so:

¢ Need integration with the “outside world” —
foreign functions, 1/O.

¢ Programs need to run sufficiently quickly.

EE-PigWeek, January 7th 2010 — p.4/2.

Why Idris?

- 0000000_]
Why Idris rather than Agda, Coq, Epigram, ...?

B Useful to have freedom to experiment with high level
language features.
B | want to see what we can achieve Iin practice, so:

¢ Need integration with the “outside world” —
foreign functions, 1/O.

¢ Programs need to run sufficiently quickly.

¢ (whisper: sometimes, in the short term, it’s
useful to cheat the type system)

EE-PigWeek, January 7th 2010 — p.4/2.

Why Idris?
— 1]
Why Idris rather than Agda, Coq, Epigram, ...?

B Useful to have freedom to experiment with high level
language features.
B | want to see what we can achieve Iin practice, so:

¢ Need integration with the “outside world” —
foreign functions, 1/O.

¢ Programs need to run sufficiently quickly.

¢ (whisper: sometimes, in the short term, it’s
useful to cheat the type system)

B Making a programming language is fun. ..

EE-PigWeek, January 7th 2010 — p.4/2.

Dependent Types In Idris
o

Dependent types allow types to be parameterised by
values, giving a more precise description of data.
Some data types in Idris:

data Nat = 0 | S Nat;

infixr 5 :: ; -- Define an infix operator

data Vect : Set -> Nat -> Set where -- List with size
VNil : Vect a O
| (::) : a -> Vect a k -> Vect a (S k);

We say that Vect Is parameterised by the element type
and indexed by its length.

EE-PigWeek, January 7th 2010 — p.5/2.

Functions
]

The type of a function over vectors describes invariants
of the input/output lengths.

e.g. the type of vAdd expresses that the output length is
the same as the input length:

vAdd : Vect Int n -> Vect Int n -> Vect Int n;
vAdd VNil VNil = VNil;
vAdd (x :: x8) (y :: ys) = x +y :: vAdd xs ys;

The type checker works out the type of n implicitly, from
the type of Vect.

EE-PigWeek, January 7th 2010 — p.6/2.

Input and Output
-

/O in Idris works in a similar way to Haskell. e.g. readVec
reads user input and adds to an accumulator:

readVec : Vect Int n -> I0 (p **x Vect Int p);

readVec xs = do { putStr "Number: ";
val <- getlnt;
if val == -1 then return << _, xs >>

else (readVec (val :: xs));

}s

The program returns a dependent pair, which pairs a
value with a predicate on that value.

EE-PigWeek, January 7th 2010 — p.7 /2.

The with Rule
S

The with rule allows dependent pattern matching on
Intermediate values:

vifilter : (a -> Bool) -> Vect a n -> (p ** Vect a p);
viilter £ VNil = << _, VNil >>;
vifilter f (x :: xs) with (f x, vfilter xs f) {

| (True, << _, x8’ >>) = << _, X :: x87 >>}

| (False, << _, xs8? >>) = << _, x87 >>;

The underscore _ means either match anything (on the
left of a clause) or infer a value (on the right).

EE-PigWeek, January 7th 2010 — p.8/2.

Libraries
1

Libraries can be imported via include "lib.idr". All
programs automatically import prelude.idr which
Includes, among other things:

B Primitive types Int, String and Char, plus Nat, Bool
Tuples, dependent pairs.

Fin, the finite sets.

List, Vect and related functions.

Maybe and Either

The 10 monad, and foreign function interface.

EE-PigWeek, January 7th 2010 — p.9/2.

A Type Safe Interpreter

A common introductory example to dependent types Is
the type safe interpreter. The pattern is:

B Define a data type which represents the language
and its typing rules.

B Write an interpreter function which evaluates this
data type directly.

[demo: interp.idr]

EE-PigWeek, January 7th 2010 — p.10/2:

A Type Safe Interpreter
-—

Notice that when we run the interpreter on functions
without arguments, we get a translation into Idris:

Idris> interp Empty test
\x : Int . \ xO : Int . x + %0
Idris> interp Empty double

\ x : Int . x+x

ldris Iimplements %spec and %freeze annotations which
control the amount of evaluation at compile time.

[demo: interp.idr againj

EE-PigWeek, January 7th 2010 — p.11/2:

A Type Safe Interpreter
-—

We have partially evaluated these programs. If we can
do this reliably, and have reasonable control over, e.g.,
Inlining, then we have a good recipe for efficient Domain
Specific Language (DSL) implementation:

B Define the language data type

B Write the interpreter

B Specialise the interpreter w.r.t. real programs

If we trust the host language’s type checker and code
generator — admittedly we still have to prove this, but
only once! — then we can trust the DSL implementation.

EE-PigWeek, January 7th 2010 — p.12/2:

Resource Usage Verification
-

We have applied the type safe interpreter approach to a
family of domain specific languages with resource usage
properties, in their type:

B File handling

B Memory usage

B Concurrency (locks)

B Network protocol state

As an example, | will outline the construction of a DSL for
a simple network transport protocol.

EE-PigWeek, January 7th 2010 — p.13/2:

Example — Network Protocols
-

Protocol correctness can be verified by model-checking a
finite-state machine. However:

B There may be a large number of states and
transitions.

B The model is needed in addition to the
Implementation.

Model-checking is therefore not self-contained. It can
verify a protocol, but not its implementation.

EE-PigWeek, January 7th 2010 — p.14/2:

Example — Network Protocols
-

In our approach we construct a self-contained

domain-specific framework in a dependently-typed
language.

B \We can express correctness properties in the
Implementation itself.

B \We can express the precise form of data and ensure
It Is validated.

B \We aim for Correctness By Construction.

EE-PigWeek, January 7th 2010 — p.15/2:

ARQ
N

Our simple transport protocol:

B Automatic Repeat Request (ARQ)
B Separate sender and receiver

B State
¢ Session state (status of connection)

¢ Transmission state (status of transmitted data)

EE-PigWeek, January 7th 2010 — p.16/2:

Session State
c

START

TIMEQUT

TIMEOQUT

END RCV ACK START_RCV_ACK

EE-PigWeek, January 7th 2010 — p.17 /2.

Transmission State

SEND

RCV_ACK
(failure)

EE-PigWeek, January 7th 2010 — p.18/2:

Session Management
-

B START — Initiate a session

B START_RECV_ACK
— wait for the receiver to be ready

B END — close a session

B END RECV_ACK
— walt for the receiver to close

EE-PigWeek, January 7th 2010 — p.19/2:

Session Management
]
B START — Initiate a session

B START_RECV_ACK
— wait for the receiver to be ready

B END — close a session

B END RECV_ACK
— walt for the receiver to close

When are these operations valid? What is their effect on
the state? How do we apply them correctly?

EE-PigWeek, January 7th 2010 — p.19/2:

Session Management

We would like to express contraints on these operations, describing
when they are valid, e.g.:

Command Precondition | Postcondition

START CLOSED OPENING

START_RECV_ACK | OPENING OPEN (if ACK received)
OPENING (if nothing received)

END OPEN CLOSING

END_RECV_ACK CLOSING CLOSED (if ACK received)

CLOSED (if nothing received)

EE-PigWeek, January 7th 2010 — p.20/2:

Sessions, Dependently Typed
o

How do we express our session state machine?

B Make each transition an operation in a DSL.

B Define the abstract syntax of the DSL language as a
dependent type.

B |mplement an interpreter for the abstract syntax.

B Specialise the interpreter for the ARQ
Implementation.

This is the recipe we followed for the well typed
Interpreter ...

EE-PigWeek, January 7th 2010 — p.21/2:

Session State, Formally
-

State carries the session state, I.e. states in the Finite
State Machine, plus additional data:

data State = CLOSED
| OPEN PState -- transmission state
| CLOSING
| OPENING

PState carries the transmission state. An open
connection Is either waiting for an ACK or ready to send
the next packet.

data PState = Waiting Seq -- seq. no.
| Ready Seq -- seq. no.

EE-PigWeek, January 7th 2010 — p.22/2:

Sessions, Formally
-

ARQLang is a data type defining the abstract syntax of our
DSL, encoding state transitions in the type:

data ARQLang : State -> State -> Set -> Set where
START : ARQLang CLOSED OPENING ()
| START_RECV_ACK
: (if_ok: ARQLang (OPEN (Ready First)) B Ty) ->
(if_fail: ARQLang OPENING B Ty) ->
(ARQLang OPENING B Ty)

[demo: ARQds1.idr]

EE-PigWeek, January 7th 2010 — p.23 /2.

Results
c

We have implemented a number of examples using the

DSL approach, and compared the performance of the
Interpreted and specialised versions with equivalent
programs in C and Java.

B File handling
¢ Copying a file

¢ Processing file contents (e.g. reading, sorting,
writing)

B Functional language implementation
¢ Well-typed interpreter extended with lists

EE-PigWeek, January 7th 2010 — p.24/2.

Results

Run time, in seconds of user time, for a variety of DSL

programs:

Program Spec | Gen Java C
factil 0.017 | 8.598 | 0.081 | 0.007
fact?2 1.650 | 877.2 || 1.937 | 0.653

sumlist 3.181 | 1148.0 || 4.413 | 0.346

copy 0589 | 1.974 || 1.770 | 0.564

copy_dynamic | 0.507 | 1.763 || 1.6/3 | 0.512

copy_store | 1.7/05 | 7.650 | 3.324 | 1.159

sort_file | 5.205| 7.510 || 2.610 | 1.728
ARQ 0.149 | 0.240 — —

EE-PigWeek, January 7th 2010 — p.25/2.

Conclusion
]

Dependent types allow us to implement embedded DSLs
with rich specification/verification. Also:

B \We need an evaluator for type checking anyway, so
why not use it for specialisation?

¢ Related to MetaOCaml/Template Haskell, but
free!

¢ If (when?) we trust the Idris type checker and
code generator, we can trust our DSL.

¢ DSL programs will be as efficient as we can
make Idris (i.e. no interpreter overhead).

B | ots of interesting (resource related) problems fit
Into this framework.

EE-PigWeek, January 7th 2010 — p.26/2.

Further Reading
c

B “Scrapping your Inefficient Engine: using Partial Evaluation to
Improve Domain-Specific Language Implementation”
— E. Brady and K. Hammond,
submitted 2009.

B “Domain Specific Languages (DSLs) for Network Protocols”
— S. Bhatti, E. Brady, K. Hammond and J. McKinna,
In Next Generation Network Architecture 2009.

B http://www.cs.st-andrews.ac.uk/~eb/hacking/ARQdsl.html
— ARQ DSL implementation

B http://www.cs.st-andrews.ac.uk/~eb/Idris

B http://www.cs.st-andrews.ac.uk/~eb/Idris/tutorial.html

EE-PigWeek, January 7th 2010 — p.27 /2.

http://www.cs.st-andrews.ac.uk/~eb/hacking/ARQdsl.html
http://www.cs.st-andrews.ac.uk/~eb/Idris
http://www.cs.st-andrews.ac.uk/~eb/Idris/tutorial.html

	Introduction
	Idris
	Why Idris?
	Dependent Types in Idris
	Functions
	Input and Output
	The 	SY {with} Rule
	Libraries
	A Type Safe Interpreter
	A Type Safe Interpreter
	A Type Safe Interpreter
	Resource Usage Verification
	Example --- Network Protocols
	Example --- Network Protocols
	ARQ
	Session State
	Transmission State
	Session Management
	Session Management
	Sessions, Dependently Typed
	Session State, Formally
	Sessions, Formally
	Results
	Results
	Conclusion
	Further Reading

