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e Automated fault diagnosis for Autosub 6000
AUV — motivation and goals

e Overview of different diagnosis methods

e A closer look at model-based (consistency
based) diagnosis

e Diagnosis and mission scripts
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The diagnosis problem is to
determine the state of a system over
time given a stream of observations
of that system.
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e Autonomous Underwater Vehicle (AUV)
e 2.8 m3 displacement

e 0.5 m3 available for
scientific payload

Mational Oceanograp
Centre, Southampton

RATURAL §

15 = 55mlong
= Range 180 km
= Mission duration up to 60 h
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Autosub 6000 and its predecessors have completed
> 400 missions
There have been

— Near losses, vehicle had to be rescued by a ROV

— Actual loss, 17 km under 200 m thick Fimbul Ice Shelf
in the Antarctic

There is logged mission data with samples of
nominal behaviour and a number of faults that have
occurred

— Knocked stern plane
— Failure of connectors
— Failure of servo potentiometre

Collision with seabed is one of the primary causes
of potential vehicle loss



Actuators: Motor, Rudder, Stern
Plane and Abort Weights
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Stern plane
Abort weight
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e Depth (pressure)
e Altitude (ADCP)
e Ground speed / water speed (ADCP)

e Power consumption, ground faults, battery faults
(various sensors)

o Attitude, pitch, roll (INS)

e GPS (only on surface)

e Temperatures, leaks,

* Propeller RPM, stern plane angle, rudder angle
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Expert
system
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Case-based
diagnosis

Data-driven
diagnosis
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Model-based
diagnosis
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/ Control-theory based diagnosis

——  Consistency-based diagnosis
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Stochastic approaches
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 Trees can get very large

e Trees are hard to maintain

* Trees cannot be (easily) used for continuous
diagnosis
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* A database of previous experience

— Look for previous cases with similar symptoms in
the database

— If there are any, see what was done and what was
the outcome

e Can be very useful for e.g. copiers (Xerox)
e Again, cannot be used continuously.

 Requires feedback to be generated for each
case.
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e E.g. Principal Component Analysis (PCA),
Fisher discriminant analysis; Partial least
squares; Canonical variate analysis

e The idea (PCA):
— Capture data from a nominally behaving system.
— Use eigenvector decomposition of the correlation
matrix of the process variables.

— Eigenvectors provide a sensitive means for
discovering variances in correlations between

different variables.
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e Can be used for continuous processes
 Are used widely in e.g. chemical plants

* Do not play that well with discrete changes of

modes which change the correlation between
variables.
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e We use Livingstone 2 model-based diagnosis engine

Given:

— A model of a physical system (similar to model programs)
— The actions taken and observations received thus far

Model

Determine

Commands

— Most likely states of the system — mode identification
— Commands needed to move to a desirable state — recovery
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Example: Depth Demand

Autoszub 6888 Hizsion HO12 Log: Honinal Behaviour
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Step of the nission script



Example: Role of the Mission
Script

gt Honinal Behaviour
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A number of parameters are set in the configuration scripts
Domain axioms are based on domain knowledge from the

engineers
Example:

Variable Type

Variable name

Invariant condition

UNVT_MaxMinLim | ncSplaneLimits | Stern plane max min limits compared to phys-
ical capability of the control surface

UNVT_float_type ncMaxDepth ncSafeMaxDepth < Abort Weight Release
max depth

UNVT_float_type ncMinDepth ncMinDepth << Max depth

UNVT_float_type ncSafeMaxDepth | ncSafeMaxDepth < Abort Weight Release
max depth

UNVT_float_type ncSafeMinDepth | ncSafeMinDepth < Max depth

UNVT_float_type

nckFwdScalelp

ncFwdScaleUp € [0, 1]

UNVT_float_type

nckFwdScaleDn

ncFwdScaleDn € [0, 1]

Boolean

nci_sim mode

Must be false
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Autoszub 6888 Hizsion HO12 Log: Sea Floor Following Routine

T T . T T T T 11“
Depth reading —+—
Depth demand =
466p Progress of Hission Control ¥ i
115

46808

KK E R X

Depth {n}




UNIVERSITY?F '
BIRMINGHAM I\VII iSS

10

r

Cor
JL

Autoszub 6888 Hizsion HO12 Log: Failure of the S5tern Flane Servo Potentionetre
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Step of the nission script
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o Particle Filters

. For N particles p'ii i =1,...,NN. 53111131& discrete modes :a:'[f:' from the prior P(Zg).

|
2. For each particle p'?/, set ,uﬂ and ¥ :' to the prior mean and covariance in state z,g )
. For each time-step ¢t u:ln:n

(@) Foreach p® = (2, |, 21Y,) do
1. Sample a new mode:

’JJ

O p(Z,|29))

i1. Perform Kalman update using parameters from mode :»:i ).

(351,89 il 50) — KF(ul ), 50y, 6(2("))
i1i. Compte the weight of particle ﬁ':ij':

w!” {—P{yt|yt|t 89 = N(y:: ytlt LS.

(b) Resample as in step 3.(b) of the PF algorithm (see Figure 1).
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e Autosub 6000 AUV is a great platform automated
diagnosis.

 We generate diagnosis components corresponding to
mission scripts to infer the internal state of the system

— During diagnosis component generation we analyse
mission scripts and configuration for inconsistencies

— We provide an estimated depth profile for pre-mission
validation.

 Current work: we generate components from the
mission script for diagnosis model that work on-board
on the vehicle and off-board using telemetry data

 We are looking into ways to write hybrid diagnosis
models in a systematic way



