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Reaction Systems

+ Semantics is specified by reaction (or “reduction”) rules,
which are pairs “(redex, reactum)”. For instance:

(5 + 3, 8) written as 5 + 3 −→ 8

((λx .M)N,M{N/x}) written as (λx .M)N −→ M{N/x}

+ A reaction system (RS) is specified by a set R of such rules,
and possibly a family of active contexts where redexes have to
be found in order to fire the rule.

(l , r) ∈ R
C [l ] −→ C [r ]

+ Only a silent, “internal” state changes.

+ No interaction with the surrounding environment, thus no
observation is specified.
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Labelled Transition Systems

+ Labelled transition systems are relations of the form

(P,Q, a) written as P
a−→ Q

where P,Q are systems (processes, programs with state,
etc. . . ) and a is a label, that is an observation.

+ LTSs are used for defining the behaviour of calculi/systems
because they endorse most important techniques for verifying
properties (e.g., model checking) and observational
equivalence (e.g., bisimulations).

+ The labels should be enough to describe faithfully the aspects
we are observing, still not too many to be impractible to use.

+ In general good LTSs are difficult to describe, and often many
ad hoc choices can be done (compare e.g. CCS, π-calculus
and Ambient calculus).

+ RSs are much easier to state than LTSs, but are not as useful!
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Labelled Transition Systems from Reaction Systems?

Principle

What can be observed about a process P are its interactions with
the surrounding environment.

Since a reaction system defines completely the behaviour of a
system, it contains also the informations about interactions,
although hidden.

Problem

Given a reaction system, is it possible to derive a “good” LTS?

By “good” we intend that

+ the induced bisimulation must be a congruence

+ labels should be not too many (otherwise it is difficult to use
in practice)
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Ad hoc solutions

Sometimes it can be done ad hoc, e.g, CCS: from reaction rule

a.P | ā.Q −→ P | Q

we guess the transitions

α.P
α−→ P

P
a−→ P ′ Q

ā−→ Q ′

P | Q τ−→ P ′ | Q ′

because we recognize labels as the (minimal) interaction with the
surrounding contexts.
Ad hoc solutions are difficult, error prone and require lot of work
and experience. (Cf. the plethora of LTSs and bisimulations for
π-calculus)

Aim

We look for a general, uniform way for deriving LTSs from RSs.
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The “sledgehammer” approach

Define the observations (the labels) of an agent as the contexts
which trigger a reaction rule

M[P] −→ Q =⇒ P
M−→ Q

More formally: a transition a
M−→ b is

defined when there exist a reaction rule
(l , r) and an active context D, such
that M ◦ a = D ◦ l and b = D ◦ r .

l r

a D

b
M

Theorem

The bisimilarity induced by the contextual LTS is a congruence.

+ But there are infinite labels for each process.
+ Many labels are subsumed by simpler ones:

let L be a label for every context C [·], C [L] is a new label.
+ How to restrict the set of labels to only “minimal” contexts?
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Relative and Idem Pushouts [Leifer, Milner 2000]

The “minimality” can be elegantely expressed as a universal
categorical property.

f1f0

h1h0

g1g0
h

f1f0

h1h0

g1g0 h

j k1

k0

k

f1f0

h1h0

g1g0 id

(1) (2) (3)

Call g0, g1 a bound for f0, f1 if g0 ◦ f0 = g1 ◦ f1.

1. A relative bound (h0, h1, h) for f0, f1 to g0, g1.

2. A relative pushout (RPO) (h0, h1, h) for f0, f1 to g0, g1: for any
other relative bound (k0, k1, k), there is a unique mediator j .

3. A idem pushout (IPO) g0, g1 for f0, g1: (g0, g1, id) is an RPO
for f0, f1 to g0, g1.
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Relative and Idem Pushouts: a simple example

Processes

P ::= a | P1|P2

Contexts

C ::= − | C |P | P|C

a|b b|c

−|c |d |e a| − |d |e

−|c a|−

−|d |e

−|c |d a| − |d

−|e

−|d
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LTSs from RSs and IPOs

Given a reactive system (by means of a set of reaction rules)

an IPO transition a
M−→ b is defined

when there exist a reaction rule (l , r)
and an active context D, such that
(M,D) is an IPO for (a, l) and
b = D ◦ r . l r

a D

b
M

Labels are only the contexts which form an IPO, that is, the
minimal completion context for a that allows a reaction to take
place, that is M ◦ a = D ◦ l (and then M ◦ a rewrites into D ◦ r).

Theorem (Leifer, Milner 2000)

The bisimilarity induced by an IPO LTS is a congruence.
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The Plan: Metamodels with RPOs

For reaching our Aim (“general frameworks for turning RSs into
LTSs”), we need to find:

+ a category where RPOs exist and can be calculated;

+ conditions for establishing when a span (f0, f1) has a bound
(and hence an IPO), and how to calculate these IPOs;

+ encoding methodologies, that is, how to represent calculi and
systems (with reaction semantics) in these categories.

Those frameworks allow to obtain “automatically” a reduced LTS,
whose bisimulation is a congruence and it is sound with respect to
observational equivalence.

Proposal

Bigraphical frameworks.
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Directed Bigraphs

Directed bigraphs are a bi-graphical framework, in the style of
Milner’s Bigraphs.

+ They have RPOs, thus allows the definition of LTS using the
IPO construction.

+ They unify previous, incompatible versions of bigraphs:

+ output-linear link graphs (i.e. Milner’s);
+ input-linear link graphs (i.e. Sassone-Sobociński’s).

+ They allow to represent systems and calculi not yet covered by
previous proposals.
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Example of a directed bigraph

A directed bigraph has nodes, edges and links.

0

v0

v1

v2

0
1

x y

e0

w

e1

1

v3

v4

2

e2

e3

z

u

Nodes

Each node v0, v1, . . . , has an arity (i.e. a set of ports);
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A directed bigraph has nodes, edges and links.

0

v0

v1
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1

v3
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Edges

Edges e0, e1, . . . represent global resources.
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A directed bigraph has nodes, edges and links.
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Ports

Ports “ask for connections” to resources.
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Example of a directed bigraph

A directed bigraph has nodes, edges and links.

0

v0

v1

v2
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1

x y

e0

w

e1

1

v3

v4

2

e2

e3

z

u

Placing

Nodes can be nested, instead edges are not subject to positions.
Sites are holes which can be fitted by roots of another bigraph.

12 / 31



Example of a directed bigraph

A directed bigraph has nodes, edges and links.
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Links

Links describes the access/request of resources by nodes.
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Example of a directed bigraph

A directed bigraph has nodes, edges and links.

0

v0

v1

v2

0
1

x y

e0

w

e1

1

v3

v4

2

e2

e3

z

u

Names

Names x , y , z , . . . are “channels” through which controls can give
or request access to resources.
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Interfaces and tensor product

G0 : 〈0, (∅, ∅)〉 → 〈1, ({w}, {x})〉

v0

w

e0

x

v1

e1
v2

G1 : 〈0, (∅, ∅)〉 → 〈1, (∅, {z , y})〉

yz

v3

G0 ⊗ G1 : 〈0, (∅, ∅)〉 → 〈2, ({w}, {x , z , y})〉

v0

w

e0

yzx

v1

e1
v2

v3
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Interfaces and composition

H : 〈2, ({w}, {x , z , y})〉 → 〈1, ({y}, ∅)〉

v4

v5

w

y

y

e5

x z

e4

G : 〈0, (∅, ∅)〉 → 〈2, ({w}, {x , z , y})〉

v0

w

e0

yzx

v1

e1
v2

v3

H ◦ G : 〈0, (∅, ∅)〉 → 〈1, ({y}, ∅)〉

v0

v5

v5

e0

y

e5

v1

e1
v2 e4

v3
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directed bigraphs = place graphs + dir. link graphs

directed bigraph
G : 〈3, ({w}, {u})〉 → 〈2, ({x , z}, {y})〉

0

v0

v1

v2

0
1

x y

e0

w

e1

1

v3

v4

2

e2

e3

z

u

place graph

GP : 3→ 2

0

v0 v2

v1 1

0

1

v3

v4 2

directed link graph
GL : ({w}, {u})→ ({x , z}, {y})

v0 v1

v2

x y

e0

w

e1

v3

v4

e2

e3

z

u
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Reaction rules

A signature is a typing over nodes.

door key

A reaction rule is a pair of (parametric) bigraphs.

x x

key is atomic

door is not atomic

Reaction application: matching a redex inside an agent.

x y
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Directed Bigraphical Reactive Systems

Directed Bigraphical Reactive System (DBRS)

A DBRS D(K,R) (or simply D) over a signature K is

1. the category DBig(K)

2. equipped with a set of (parametric) reaction rules R.

3. A compositional reflective subcategory A of active contexts.

+ A signature K is a set of types which can be assigned to
nodes.

+ A parametric rule is a pair (redex , reactum) of bigraphs that
can have holes, this describes a set of ground rules.

+ A rule can be fired only when its redex appears in an active
context (i.e. a bigraphs with holes).
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Example: The Fusion Calculus

Process syntax

P,Q ::= 0 | zx .P | z̄x .P | P|Q | (x)P

(up to a structural congruence ≡)

System configuration

A system configuration is denoted by a pair (P, ϕ) to mean that P
has associated fusion ϕ, which is an equivalence relation of the
form {x1 = y1, . . . , xn = yn}.

Rewriting semantics

(Com) (xy .P|z̄w .Q|R, ϕ)→ (P|Q|R, (ϕ ∪ {y = w})∗)
if x ϕ z

( )∗ is the reflexive and transitive closure.
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The Fusion Calculus - Signature

The corresponding bigraphical signature is

KF = {get : 2, send : 2, fuse : 2},

where get and send are passive and fuse is atomic as follows:

0
x z

0

getx ,z

0
z y

0

sendy ,z

0
x y

fusex ,y

The place graph will represent the syntactic tree of the fusion
processes.
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Encoding of fusion processes in bigraphs

A fusion process is encoded into a bigraph in two steps:

1. first, we translate the process into a bigraph without resources
(i.e. edges, representing equivalence class of names), except
for the bindings;

2. next, we add the resources according to a fusion relation, and
eventually fusing names together, that is the names are linked
to the same equivalence class.

J(yx .0 | (x)z̄x .0, {z = y})K

∑
[n]∈{z=y}O

[n]
n ◦ HN

n
n ◦ Mn

[n]

Jyx .0 | (x)z̄x .0K{y ,z,x}

0
x y z

x y z
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The Fusion Calculus - Rules

x z y

0 1

getx ,z & sendy ,z → fusex ,y & Mz & id1 & id1 ρ(0) 7→ 0 ρ(1) 7→ 1

x z y

0 1 Com

x y

(HN
x
x ⊗ HN

y
y ) ◦ fusex ,y → Ox ,y

z ◦ Hz

x y

Fuse

x

HN
x
x ◦ Mx

y ,z ◦ fusey ,z → Hx

x

Disp
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Adequacy of the encoding

Proposition - Syntax

Let P and Q be two processes and ϕ any fusion; then P ≡ Q if
and only if J(P, ϕ)K = J(Q, ϕ)K.

Proposition - Semantics

1. if (P, ϕ)→ (P ′, ϕ′) then J(P, ϕ)K −→2 J(P ′, ϕ′)K;

2. if J(P, ϕ)K −→ G then ∃P ′, ϕ′. (P, ϕ)→ (P ′, ϕ′) and
G −→ J(P ′, ϕ′)K.
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Comparing labelled transition systems

We can compare the systematically derived LTS with the original
(ad hoc) one given by Parrow and Victor.

Labelled transition system

−
α.P

α→ P

P
α→ P ′

P|Q α→ P ′|Q
P

uz→ P ′, u /∈ {z , z̄}

(z)P
(z)uz→ P ′

P
{x=y}→ P ′

(y)P
1→ P ′{x/y}

P
α→ P ′, x /∈ n(α)

(x)P
α→ (x)P ′

P
ux→ P ′, Q

ūy→ Q ′

P|Q {x=y}→ P ′|Q ′

Hyperequivalence

The bisimulation (hyperbisimulation) needs to be closed under all
substitutions to be a congruence (hyperequivalence, ∼F ).
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Examples of transitions - Communication

Half step of the Com rule. The “identity label” corresponds to τ .

0
u v w

0
x z y

0
x z y

0
u v w

0
u v w

u v w

0

0
u v w

x z y

0

J(vu | v̄w , ∅)K
id〈1,({u,v,w},∅)〉−−−−−−−−−→ ((HN

u
x ⊗ HN

w
y ) ◦ fusex ,y )⊗ Hv
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Examples of transitions - Prefix

Completing an input with an output. This label corresponds to uw .

0
w u

0
x z y

0
x z y

0
w u y

0
w u y

w u

0

0
w u y

x z y

0

J(uw , ∅)K
id〈1,({u,w},∅)〉|sendy

u−−−−−−−−−−−→ ((HN
w
x ⊗ idy ) ◦ fusex ,y )⊗ Hu
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Examples of transitions - Communication enabling

Enabling a communication by merging two different names.

0
x z w y

0
u v

0
u v

0
x z w y

1

0

0

1
x z w y

x z w y

0
x z w y

u v

1

0

J(xz | w̄y , ∅)K
id1⊗(id({x,y,z,w},∅)|fusez,w )
−−−−−−−−−−−−−−−−→ J(xz | wy , {z = w})K⊗ 1

Corr
esp

ond
to

clo
sur

e und
er

sub
stit

uti
on!
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Examples of transitions - Equality test

A test transition. An agent can perform this transition if u ϕ v .

0
u v

0
x z y

0
x z y

0
u v

1
x y

0

0

1
x u v y

u v

0
x u v y

x z y

1

1

J(uv , {u = v})K
id1⊗(id({u,v},∅)|getxu |sendy

v )
−−−−−−−−−−−−−−−−→ (Ou,v

s ◦ HN
s
s ◦ gets,s)⊗ fusex ,y

Not
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ilab
le in

the
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IPO bisimilarity is sound

From IPO bisimilarity (∼it) we can define a congruence on
processes of Fusion calculus:

P ∼it Q
4⇐⇒ ∀ϕ.J(P, ϕ)K ∼it J(Q, ϕ)K

This congruence can be characterized more easily as follows:

Proposition

For all P,Q: P ∼it Q ⇐⇒ J(P, ∅)K ∼it J(Q, ∅)K.

Theorem
∼it ⊆ ∼F

Proof. Prove that ∼it is an hyperbisimulation.
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What about completeness?

Claim
∼F ⊆ ∼it

Difficult to prove because labels and descendants in bigraphical
encoding may not represent any Fusion process (e.g. width > 1).
Two possible approaches:

1. prove that ∼F is an IPO bisimulation by means of some up-to
technique (e.g. progressions);

2. try to restrict to correct agents (e.g. by sorting).
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Conclusion

Summary

Directed bigraphs provide a general operational framework where
reactive systems can be presented and studied.
LTS with compositional bisimulations can be systematically
derived.

Other results not shown here

1. A complete algebraic axiomatization for directed bigraphs,
based on a set of elementary bigraphs and a normal form.

2. How to reduce further the number of derived labels.

3. Encoding of Petri nets, web services and chemical reactions.

4. Apply the model to system biology, trying encoding (and
possibly extending) some important formalisms as κ-calculus
and brane calculus. (Marino’s talk in Andu)
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Future Work

1. Web service interaction, such as SCC or CC-Pi.

2. Adding quantitative aspects (i.e., reaction rates).

3. Apply sorting techniques a là Birkedal-Debois to directed
bigraphs, to obtain bindings, locality of names,. . .

4. Implementation and tools. Work in progress

5. Generalize the framework to deal with n-graph-like structures.
Work in progress (My talk in Andu)

31 / 31


	Introduction
	RSs and LTSs
	LTSs from RSs

	Labels from contexts
	The sledgehammer approach
	RPOs and IPOs
	Labels from IPOs

	Directed Bigraphical Models
	Directed Bigraphs

	Applications
	Fusion calculus
	Bigraphical encoding
	Comparing labelled transition systems
	Results about bisimilarities

	Conclusion
	Conclusion and Future Work


